Developmental patterning by gradients of mobile small RNAs.

04:37 EDT 2nd August 2014 | BioPortfolio

Summary of "Developmental patterning by gradients of mobile small RNAs."

Development of multicellular organisms depends on intercellular communication via mobile signals that provide positional information to coordinate cell fate decisions. In addition to peptide ligands, transcription factors, and hormones, plants use small RNAs as positional instructive signals. The unique patterning properties of small RNA gradients resulting from regulated mobility suggest conceptual similarities to the function of animal morphogens, and provide robustness and precision to the formation of cell fate boundaries. While common principles may underlie the formation, stability, and interpretation of both plant small RNA and animal morphogen gradients, the unique nature of small RNAs with respect to their biogenesis and target regulation imply important differences as well. In this review, we discuss the patterning properties of mobile small RNAs and highlight recent studies that have advanced our understanding of how small RNAs move, and how the graded accumulation that underlies their patterning activity could be created, maintained, and interpreted.

Affiliation

Journal Details

This article was published in the following journal.

Name: Current opinion in genetics & development
ISSN: 1879-0380
Pages: 83-91

Links

PubMed Articles [10336 Associated PubMed Articles listed on BioPortfolio]

Is This Mine? Small RNAs Help to Decide.

Genomes are constantly challenged by invaders, so determining what belongs is crucial. Small RNAs silence alien DNA, but Conine et al. (2013), Seth et al. (2013), and Wedeles et al. (2013) now repo...

Small RNA as a regulator of hematopoietic development, immune response in infection and tumorigenesis.

Posttranscriptional gene regulation by small RNAs (15-40-nucleotide noncoding RNAs) is now established as an important branch of the gene regulatory system. It has recently been revealed that noncodin...

Pol III Promoters to Express Small RNAs: Delineation of Transcription Initiation.

Pol III promoters such as U6 are commonly used to express small RNAs, including small interfering RNA, short hairpin RNA, and guide RNA, for the clustered regularly interspaced short palindromic repea...

Planting the seed: target recognition of short guide RNAs.

Small guide RNAs play important roles in cellular processes such as regulation of gene expression and host defense against invading nucleic acids. The mode of action of small RNAs relies on protein-as...

Coordination of Wing and Whole-Body Development at Developmental Milestones Ensures Robustness against Environmental and Physiological Perturbations.

Development produces correctly patterned tissues under a wide range of conditions that alter the rate of development in the whole body. We propose two hypotheses through which tissue patterning could...

Clinical Trials [1770 Associated Clinical Trials listed on BioPortfolio]

Translating Evidence Based Developmental Screening Into Pediatric Primary Care

The purpose of this study is to examine the feasibility, acceptability and effectiveness of implementing the AAP's recommendation that clinicians provide developmental surveillance at all...

Adiposity and Fat Patterning in Black Americans

To examine the relationships of obesity and fat patterning with morbidity and mortality in Black Americans.

Bacterial Contamination of Anaesthetists' Hands by Personal Mobile Phones Used in the Operating Theatre

The use of mobile phones in the operating room (OR) has become widespread, because of the lack of reports on serious problems. Since mobile phones are used in close body contact and since,...

Mobile - Bearing Knee Study

To evaluate the safety and efficacy of the Encore Mobile-Bearing Knee. The clinical results of the Mobile-Bearing Knee will be compared to the clinical results of the Foundation Total Knee

Developmental Dyslexia and Functional Maturation of Auditory Cortex

Developmental dyslexia is a frequent learning disability. The aim of this study is to compare auditory evoked cortical responses to syllables and tones in developmental dyslexia and contro...

Medical and Biotech [MESH] Definitions

Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing.

The processes occurring in early development that direct morphogenesis. They specify the body plan ensuring that cells will proceed to differentiate, grow, and diversify in size and shape at the correct relative positions. Included are axial patterning, segmentation, compartment specification, limb position, organ boundary patterning, blood vessel patterning, etc.

Small RNAs found in the cytoplasm usually complexed with proteins in scRNPs (RIBONUCLEOPROTEINS, SMALL CYTOPLASMIC).

Small nuclear RNAs that are involved in the processing of pre-ribosomal RNA in the nucleolus. Box C/D containing snoRNAs (U14, U15, U16, U20, U21 and U24-U63) direct site-specific methylation of various ribose moieties. Box H/ACA containing snoRNAs (E2, E3, U19, U23, and U64-U72) direct the conversion of specific uridines to pseudouridine. Site-specific cleavages resulting in the mature ribosomal RNAs are directed by snoRNAs U3, U8, U14, U22 and the snoRNA components of RNase MRP and RNase P.

Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.

Search BioPortfolio:
Advertisement
Advertisement

Searches Linking to this Article