Automatic Human Knee Cartilage Segmentation from 3D Magnetic Resonance Images.

05:14 EST 22nd November 2014 | BioPortfolio

Summary of "Automatic Human Knee Cartilage Segmentation from 3D Magnetic Resonance Images."

This study aimed at developing a new automatic segmentation algorithm for human knee cartilage volume quantification from magnetic resonance images (MRI). Imaging was performed using a 3T scanner and a knee coil, and the exam consisted of a DESS sequence which contrasts cartilage and soft tissues including the synovial fluid. The algorithm was developed on MRI 3D images in which the bone-cartilage interface for the femur and tibia was segmented by an independent segmentation process, giving a parametric surface of the interface. Firstly, the MR images are resampled in the neighborhood of the bone surface. Secondly, by using texture analysis techniques optimized by filtering, the cartilage is discriminated as a bright and homogeneous tissue. This process of excluding soft tissues enables the detection of the external boundary of the cartilage. Thirdly, a technology based on a Bayesian decision criterion enables the automatic separation of the cartilage and synovial fluid. Finally, the cartilage volume and changes in volume for an individual between visits was assessed using the developed technology. Validation included first, for nine knee osteoarthritis patients, a comparison of the cartilage volume and changes over time between the developed automatic system and a validated semi-automatic cartilage volume system, and second, for five knee osteoarthritis patients, a test-retest procedure. Data revealed excellent Pearson correlations and Dice Similarity Coefficients (DSC) for the global knee (r=0.96, p<0.0001, median DSC=0.84), for the femur (r=0.95, p<0.0001, median DSC=0.85) and the tibia (r=0.83, p<0.0001, median DSC=0.84). Very good similarity between the automatic and semi-automatic methods in regard to cartilage loss was also found for the global knee (r=0.76, p=0.016) as well as for the femur (r=0.79, p=0.011). The test-retest revealed an excellent measurement error of -0.3?1.6% for the global knee and 0.14?1.7% for the femur. In conclusion, the newly developed fully automatic method described herein provides accurate and precise quantification of knee cartilage volume and will be a valuable tool for clinical follow-up studies.

Affiliation

Journal Details

This article was published in the following journal.

Name: IEEE transactions on bio-medical engineering
ISSN: 1558-2531
Pages:

Links

PubMed Articles [17164 Associated PubMed Articles listed on BioPortfolio]

Automated Segmentation and Analysis of Normal and Osteoarthritic Knee Menisci from Magnetic Resonance Images - Data from the Osteoarthritis Initiative.

To validate an automatic scheme for the segmentation and quantitative analysis of the medial (MM) and lateral meniscus (LM) in magnetic resonance (MR) images of the knee.

AUTOMATIC MULTI-ATLAS-BASED CARTILAGE SEGMENTATION FROM KNEE MR IMAGES.

In this paper, we propose a multi-atlas-based method to automatically segment the femoral and tibial cartilage from T1 weighted magnetic resonance (MR) knee images. The segmentation result is a joint ...

Automatic hip cartilage segmentation from 3D MR images using arc-weighted graph searching.

Accurate segmentation of hip joint cartilage from magnetic resonance (MR) images offers opportunities for quantitative investigations of pathoanatomical conditions such as osteoarthritis. In this pape...

Automatic brain segmentation using fractional signal modeling of a multiple flip angle, spoiled gradient-recalled echo acquisition.

The aim of this study was to demonstrate a new automatic brain segmentation method in magnetic resonance imaging (MRI).

Local-area cartilage segmentation (LACS), A semi-automated novel method of measuring cartilage loss in knee osteoarthritis.

To assess the responsiveness and reader time of a novel semi-automated tool to detect knee cartilage loss over two years in subjects with knee OA.

Clinical Trials [3313 Associated Clinical Trials listed on BioPortfolio]

MRI Markers of Cartilage Damage in Knee With Osteoarthritis

The objectives of this study are: to identify and develop techniques to minimize precision errors in magnetic resonance imaging (MRI) evaluation of knee cartilage, and to determine if resu...

Trial Comparing BST-CarGel and Microfracture in Repair of Articular Cartilage Lesions in the Knee

This study will investigate whether the treatment of damaged cartilage in the knee with BST-CarGel will increase the amount and quality of cartilage repair tissue when compared with microf...

Reparation of Cartilage Injuries in the Human Knee by Implantation of Fresh Human Allogenic Chondrocytes

Implantation of fresh human allogenic chondrocytes in human knee cartilage injuries to obtain a repair and prevention of secondary osteoarthritis

MR Imaging of Knee Osteoarthritis and Acute Knee Injuries

The purpose of this study is to use better magnetic resonance imaging (MRI) techniques to examine the knee and the bony and soft tissue changes so as to better predict the progression of o...

Cartilage Autograft Implantation System (CAIS) for the Repair of Knee Cartilage Through Cartilage Regeneration

The Cartilage Autograft Implantation System (CAIS) is designed as a single surgical treatment of damaged knee cartilage using the subject's own healthy cartilage obtained from a non-weight...

Medical and Biotech [MESH] Definitions

Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).

A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.

The creation of a visual display of the inside of the entire body of a human or animal for the purposes of diagnostic evaluation. This is most commonly achieved by using MAGNETIC RESONANCE IMAGING; or POSITRON EMISSION TOMOGRAPHY.

Noninflammatory degenerative disease of the knee joint consisting of three large categories: conditions that block normal synchronous movement, conditions that produce abnormal pathways of motion, and conditions that cause stress concentration resulting in changes to articular cartilage. (Crenshaw, Campbell's Operative Orthopaedics, 8th ed, p2019)

A type of MAGNETIC RESONANCE IMAGING that uses only one nuclear spin excitation per image and therefore can obtain images in a fraction of a second rather than the minutes required in traditional MRI techniques. It is used in a variety of medical and scientific applications.

Search BioPortfolio:
Loading
Advertisement

Relevant Topics

Radiology
Latest News Clinical Trials Research Drugs Reports Corporate
Radiology is the branch of medicine that studies imaging of the body; X-ray (basic, angiography, barium swallows), ultrasound, MRI, CT and PET. These imaging techniques can be used to diagnose, but also to treat a range of conditions, by allowing visuali...

Arthritis
Latest News Clinical Trials Research Drugs Reports Corporate
Arthritis is by definition the inflammation of one or more joints, characterized by swelling, pain, warmth, redness and diminished range of joint movement (Oxford Medical Dictionary). There are many different types; Noninflammatory; Osteoarthritis, N...

Advertisement