Molecular imaging of atherosclerosis in translational medicine.

19:30 EDT 31st July 2015 | BioPortfolio

Summary of "Molecular imaging of atherosclerosis in translational medicine."

Functional characterization of atherosclerosis is a promising application of molecular imaging. Radionuclide-based techniques for molecular imaging in the large arteries (e.g. aorta and carotids), along with ultrasound and magnetic resonance imaging (MRI), have been studied both experimentally and in clinical studies. Technical factors including cardiac and respiratory motion, low spatial resolution and partial volume effects mean that noninvasive molecular imaging of atherosclerosis in the coronary arteries is not ready for prime time. Positron emission tomography imaging with fluorodeoxyglucose can measure vascular inflammation in the large arteries with high reproducibility, and signal change in response to anti-inflammatory therapy has been described. MRI has proven of value for quantifying carotid artery inflammation when iron oxide nanoparticles are used as a contrast agent. Macrophage accumulation of the iron particles allows regression of inflammation to be measured with drug therapy. Similarly, contrast-enhanced ultrasound imaging is also being evaluated for functional characterization of atherosclerotic plaques. For all of these techniques, however, large-scale clinical trials are mandatory to define the prognostic importance of the imaging signals in terms of risk of future vascular events.

Affiliation

Department of Internal Medicine, Cardiovascular and Immunological Sciences, University Federico II, Naples, Italy.

Journal Details

This article was published in the following journal.

Name: European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Pages:

Links

PubMed Articles [27834 Associated PubMed Articles listed on BioPortfolio]

Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the ...

(Re)solving atherosclerosis.

Delivery of nanoparticles with arterial tropism containing the annexin A1 fragment Ac2-26 reduces signs of lesion instability in a mouse model of advanced atherosclerosis (Fredman et al., this issue).

World Molecular Imaging Congress 2015: Precision Medicine Visualized.

Molecular anatomy of ascending aorta in atherosclerosis by MS Imaging: Specific lipid and protein patterns reflect pathology.

The molecular anatomy of healthy and atherosclerotic tissue is pursued here to identify ongoing molecular changes in atherosclerosis development. Subclinical atherosclerosis cannot be predicted and no...

Establishment of research-oriented hospital: an important way for translational medicine development in China.

Globally, one of the major trends is the development of translational medicine. The traditional hospital structure could not meet the demands of translational medicine development any longer and to ex...

Clinical Trials [3164 Associated Clinical Trials listed on BioPortfolio]

Comparison of MRI and Molecular Breast Imaging in Breast Diagnostic Evaluation

The purpose of this study is to determine the sensitivity of Molecular Breast Imaging (MBI) relative to MRI of the breast in patients undergoing MRI for a clinical concern, or abnormal dia...

The Effects of Atorvastatin in Patients With Atherosclerosis

The purpose of the study is to evaluate the effects of Atorvastatin. The investigators want to find out if atorvastatin has other helpful qualities. The investigators are interested in fi...

PET Imaging of Natriuretic Peptide Receptor C (NPR-C) in Carotid Atherosclerosis (Volunteer - BioD and Safety Study)

This study is designed to assess the safety, biodistribution and dosimetry of the novel atherosclerotic imaging PET radiotracer, Cu[64]-25%-CANF-Comb.

Cardiac MR of Subclinical CVD: Impact of Age

To use magnetic resonance imaging to identify subclinical atherosclerosis and left ventricular hypertrophy in the Framingham Heart Study cohort.

An Imaging Study in Patients With Atherosclerosis Taking Rilapladib or Placebo for 12 Weeks

A study in patients with atherosclerosis to assess safety, effect and PK of rilapladib vs. placebo over 12 weeks of dosing.

Medical and Biotech [MESH] Definitions

The use of molecularly targeted imaging probes to localize and/or monitor biochemical and cellular processes via various imaging modalities that include RADIONUCLIDE IMAGING; ULTRASONOGRAPHY; MAGNETIC RESONANCE IMAGING; fluorescence imaging; and MICROSCOPY.

Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.

Non-invasive imaging of cells that have been labeled non-destructively, such as with nanoemulsions or reporter genes that can be detected by molecular imaging, to monitor their location, viability, cell lineage expansion, response to drugs, movement, or other behaviors in vivo.

Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990)

A diagnostic technique that incorporates the measurement of molecular diffusion (such as water or metabolites) for tissue assessment by MRI. The degree of molecular movement can be measured by changes of apparent diffusion coefficient (ADC) with time, as reflected by tissue microstructure. Diffusion MRI has been used to study BRAIN ISCHEMIA and tumor response to treatment.


Advertisement
 

Relevant Topic

Radiology
Latest News Clinical Trials Research Drugs Reports Corporate
Radiology is the branch of medicine that studies imaging of the body; X-ray (basic, angiography, barium swallows), ultrasound, MRI, CT and PET. These imaging techniques can be used to diagnose, but also to treat a range of conditions, by allowing visuali...

Advertisement
 

Searches Linking to this Article