DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma.

05:43 EDT 26th April 2015 | BioPortfolio

Summary of "DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma."

Background Although much is known about molecular and chromosomal characteristics that distinguish glioma histological subtypes, DNA methylation patterns of gliomas and their association with other tumor features such as mutation of isocitrate dehydrogenase (IDH) genes have only recently begun to be investigated. Methods DNA methylation of glioblastomas, astrocytomas, oligodendrogliomas, oligoastrocytomas, ependymomas, and pilocytic astrocytomas (n = 131) from the Brain Tumor Research Center at the University of California San Francisco, as well as nontumor brain tissues (n = 7), was assessed with the Illumina GoldenGate methylation array. Methylation data were subjected to recursively partitioned mixture modeling (RPMM) to derive methylation classes. Differential DNA methylation between tumor and nontumor was also assessed. The association between methylation class and IDH mutation (IDH1 and IDH2) was tested using univariate and multivariable analysis for tumors (n = 95) with available substrate for sequencing. Survival of glioma patients carrying mutant IDH (n = 57) was compared with patients carrying wild-type IDH (n = 38) using a multivariable Cox proportional hazards model and Kaplan-Meier analysis. All statistical tests were two-sided. Results We observed a statistically significant association between RPMM methylation class and glioma histological subtype (P < 2.2 × 10(-16)). Compared with nontumor brain tissues, across glioma tumor histological subtypes, the differential methylation ratios of CpG loci were statistically significantly different (permutation P < .0001). Methylation class was strongly associated with IDH mutation in gliomas (P = 3.0 × 10(-16)). Compared with glioma patients whose tumors harbored wild-type IDH, patients whose tumors harbored mutant IDH showed statistically significantly improved survival (hazard ratio of death = 0.27, 95% confidence interval = 0.10 to 0.72). Conclusion The homogeneity of methylation classes for gliomas with IDH mutation, despite their histological diversity, suggests that IDH mutation is associated with a distinct DNA methylation phenotype and an altered metabolic profile in glioma.

Affiliation

Department of Neurological Surgery, Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, CA 91458. john.wiencke@ucsf.edu.

Journal Details

This article was published in the following journal.

Name: Journal of the National Cancer Institute
ISSN: 1460-2105
Pages: 143-53

Links

PubMed Articles [9607 Associated PubMed Articles listed on BioPortfolio]

Genome-wide methylation profiling identifies an essential role of reactive oxygen species in pediatric glioblastoma multiforme and validates a methylome specific for H3 histone family 3A with absence of G-CIMP/isocitrate dehydrogenase 1 mutation.

Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH)1 mutation with a DNA methylatio...

Diagnostic Value of Plasma and Urinary 2-Hydroxyglutarate to Identify Patients With Isocitrate Dehydrogenase-Mutated Glioma.

Mutant isocitrate dehydrogenase (IDH) 1/2 enzymes can convert α-ketoglutarate into 2-hydroxyglutarate (2HG). The aim of the present study was to explore whether 2HG in plasma and urine could predict ...

Identification of a new selective chemical inhibitor of mutant isocitrate dehydrogenase-1.

Recent genome-wide sequencing studies have identified unexpected genetic alterations in cancer. In particular, missense mutations in isocitrate dehydrogenase-1 (IDH1) at arginine 132, mostly substitut...

Metabolic Reprogramming in Mutant IDH1 Glioma Cells.

Mutations in isocitrate dehydrogenase (IDH) 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocit...

Impact on prognosis of the regional distribution of MGMT methylation with respect to the CpG island methylator phenotype and age in glioma patients.

Clinical and molecular prognostic factors in gliomas include age, IDH mutation, the glioma CpG island methylator phenotype (G-CIMP+) and promoter methylation of the O(6)-methylguanine DNA-methyltransf...

Clinical Trials [1916 Associated Clinical Trials listed on BioPortfolio]

A Study to Evaluate the Safety and Effectiveness of PCV Chemotherapy in Patients With Recurrent High-grade Glioma With IDH1/2 Mutation

This trial is aimed at evaluating the safety and effectiveness of PCV chemotherapy in patients with recurrent high-grade glioma with IDH1/2 mutation.

131-I-TM-601 Study in Adults With Recurrent High-Grade Glioma

This drug is being developed to treat a type of brain cancer, glioma. This study was developed to evaluate the safety, time to disease progression and survival rates after treatment.

Mutation Analysis of 17βhydroxysteroid Dehydrogenase 3 Deficiency

To disclose the molecular pathology of our 3 families with 17βHSD3 deficiency.

Ph II Bevacizumab + Etoposide for Pts w Recurrent MG

Primary Objective to estimate 6-month progression free survival probability of pts w recurrent malignant glioma treated w Etoposide + bevacizumab. Secondary Objectives To evaluate safety ...

Temozolomide in Treating Patients With Recurrent High-Grade Glioma

RATIONALE: Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPO...

Medical and Biotech [MESH] Definitions

An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41.

A key enzyme in the glyoxylate cycle. It catalyzes the conversion of isocitrate to succinate and glyoxylate. EC 4.1.3.1.

The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host.

Continuance of life or existence especially under adverse conditions; includes methods and philosophy of survival.

Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed)

Search BioPortfolio:
Loading
Advertisement

Relevant Topics

Bioinformatics
Latest News Clinical Trials Research Drugs Reports Corporate
Bioinformatics is the application of computer software and hardware to the management of biological data to create useful information. Computers are used to gather, store, analyze and integrate biological and genetic information which can then be applied...

Alzheimer's Disease
Latest News Clinical Trials Research Drugs Reports Corporate
Of all the types of Dementia, Alzheimer's disease is the most common, affecting around 465,000 people in the UK. Neurons in the brain die, becuase  'plaques' and 'tangles' (mis-folded proteins) form in the brain. People with Al...

Advertisement

Searches Linking to this Article