Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.

07:12 EDT 1st November 2014 | BioPortfolio

Summary of "Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility."

Graphene is an outstanding material with ultrahigh thermal conductivity. Its thermal transfer properties under various strains are studied by reverse nonequilibrium molecular dynamics. Based on the unique two-dimensional structure of graphene, the distinctive geometries of graphene sheets and graphene nanoribbons with large flexibility and their intriguing thermal properties are demonstrated under strains. For example, the corrugation under uniaxial compression and helical structure under light torsion, as well as tube-like structure under strong torsion, exhibit enormously different thermal conductivity. The important robustness of thermal conductivity is found in the corrugated and helical configurations of graphene nanoribbons. Nevertheless, thermal conductivity of graphene is very sensitive to tensile strain. The relationship among phonon frequency, strain and thermal conductivity are analyzed. A similar trend line of phonon frequency dependence of thermal conductivity is observed for armchair graphene nanoribbons and zigzag graphene nanoribbons. The unique thermal properties of graphene nanoribbons under strains suggest their great potentials for nanoscale thermal managements and thermoelectric applications.

Affiliation

Department of Physics, Institute of Theoretical Physics and Astrophysics, and Fujian Key Lab of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.

Journal Details

This article was published in the following journal.

Name: Nanotechnology
ISSN: 1361-6528
Pages: 105705

Links

PubMed Articles [8286 Associated PubMed Articles listed on BioPortfolio]

Energetics of Defects on Graphene through Fluorination.

Functionalized graphene sheets (FGSs) comprise a unique member of the carbon family, demonstrating excellent electrical conductivity and mechanical strength. However, the detailed chemical composition...

Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths.

We characterize the thermal conductivity of graphite, monolayer graphene, graphane, fluorographane and bilayer graphene, solving exactly the Boltzmann transport equation for phonons, with phonon-phono...

Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials.

To date, there is no experimental characterization of thermal conductivity of semiconductor polymeric individual nanowires embedded in a matrix. This work reports on scanning thermal microscopy measur...

Optimizing thermal conductivity in functionalized macromolecules using Langevin dynamics and the globalized and bounded Nelder-Mead algorithm.

Nanocomposites with high-aspect ratio fillers attract enormous attention because of the superior physical properties of the composite over the parent matrix. Nanocomposites with functionalized graphen...

Effect of Graphene Layer Thickness and Mechanical Compliance on Interfacial Heat Flow and Thermal Conduction in Solid-liquid Phase Change Materials.

Solid-liquid phase change materials (PCMs) are attractive candidates for thermal energy storage and electronics cooling applications, but have limited applicability in state-of-the-art technologies du...

Clinical Trials [349 Associated Clinical Trials listed on BioPortfolio]

Tissue Engineering for Hair Follicle Regeneration

This study is to try to maintain cultured dermal papilla cells in spherical structure in vitro before transplanting into dermis in vivo. Also, this study is aimed in clarifying actual mech...

Thermal Signature of Patients Undergoing Radiation Therapy

The goal of this clinical research study is to evaluate whether thermal imaging (recording body temperature) can be used to check the body's response to cancer therapy. Primary Objective:...

Study to Assess the Effectiveness and Safety of FLECTOR® Patch for Treatment of Acute Back Strain

Although approved for minor strains, sprains and contusions, FLECTOR® Patch has not been studied extensively in the setting of acute back strain. This study is being conducted as an init...

Study of the Safety and Efficacy of REGN475(SAR164877) in Patients With Pain Resulting From Thermal Injury

This is a randomized, double-blind, placebo-controlled, parallel-group, single-dose study of the efficacy of REGN475 in patients with pain due to thermal injury.

Laser Interstitial Thermal Therapy Under "Real Time" MRI Guidance for "Minimal Invasive" Treatment of Liver Metastasis

The purpose of this study is to determine if the, MR guided, laser interstitial thermal therapy (LITT) treatment technique can be safety and efficiently used for the human liver metastasis

Medical and Biotech [MESH] Definitions

Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample.

The heat flow across a surface per unit area per unit time, divided by the negative of the rate of change of temperature with distance in a direction perpendicular to the surface. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)

A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.

A physical property showing different values in relation to the direction in or along which the measurement is made. The physical property may be with regard to thermal or electric conductivity or light refraction. In crystallography, it describes crystals whose index of refraction varies with the direction of the incident light. It is also called acolotropy and colotropy. The opposite of anisotropy is isotropy wherein the same values characterize the object when measured along axes in all directions.

A branch of engineering concerned with the design, construction, and maintenance of environmental facilities conducive to public health, such as water supply and waste disposal.

Search BioPortfolio:
Loading