Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.

21:48 EDT 26th April 2015 | BioPortfolio

Summary of "Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility."

Graphene is an outstanding material with ultrahigh thermal conductivity. Its thermal transfer properties under various strains are studied by reverse nonequilibrium molecular dynamics. Based on the unique two-dimensional structure of graphene, the distinctive geometries of graphene sheets and graphene nanoribbons with large flexibility and their intriguing thermal properties are demonstrated under strains. For example, the corrugation under uniaxial compression and helical structure under light torsion, as well as tube-like structure under strong torsion, exhibit enormously different thermal conductivity. The important robustness of thermal conductivity is found in the corrugated and helical configurations of graphene nanoribbons. Nevertheless, thermal conductivity of graphene is very sensitive to tensile strain. The relationship among phonon frequency, strain and thermal conductivity are analyzed. A similar trend line of phonon frequency dependence of thermal conductivity is observed for armchair graphene nanoribbons and zigzag graphene nanoribbons. The unique thermal properties of graphene nanoribbons under strains suggest their great potentials for nanoscale thermal managements and thermoelectric applications.

Affiliation

Department of Physics, Institute of Theoretical Physics and Astrophysics, and Fujian Key Lab of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China.

Journal Details

This article was published in the following journal.

Name: Nanotechnology
ISSN: 1361-6528
Pages: 105705

Links

PubMed Articles [9523 Associated PubMed Articles listed on BioPortfolio]

Scalable production of wrinkled and few-layered graphene sheets and their use for oil and organic solvent absorption.

High-quality wrinkled and few-layered graphene sheets have been produced via a mechano-thermal exfoliation process for a simple, effective and low-cost mass production. Graphene sheets were produced b...

Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths.

We characterize the thermal conductivity of graphite, monolayer graphene, graphane, fluorographane and bilayer graphene, solving exactly the Boltzmann transport equation for phonons, with phonon-phono...

Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials.

To date, there is no experimental characterization of thermal conductivity of semiconductor polymeric individual nanowires embedded in a matrix. This work reports on scanning thermal microscopy measur...

Thermal AND Gate Using a Monolayer Graphene Nanoribbon.

The first ever implementation of a thermal AND gate, which performs logic calculations with phonons, is presented using two identical thermal diodes composed of asymmetric graphene nanoribbons (GNRs)....

Optimizing thermal conductivity in functionalized macromolecules using Langevin dynamics and the globalized and bounded Nelder-Mead algorithm.

Nanocomposites with high-aspect ratio fillers attract enormous attention because of the superior physical properties of the composite over the parent matrix. Nanocomposites with functionalized graphen...

Clinical Trials [382 Associated Clinical Trials listed on BioPortfolio]

Use of Mesenchymal Stem Cells for Alveolar Bone Tissue Engineering for Cleft Lip and Palate Patients

The aim of this study is to perform the bone tissue engineering to reconstruct the alveolar bone defect in cleft lip and palate patients using mesenchymal stem cells from deciduous dental ...

Tissue Engineering for Hair Follicle Regeneration

This study is to try to maintain cultured dermal papilla cells in spherical structure in vitro before transplanting into dermis in vivo. Also, this study is aimed in clarifying actual mech...

Thermal Signature of Patients Undergoing Radiation Therapy

The goal of this clinical research study is to evaluate whether thermal imaging (recording body temperature) can be used to check the body's response to cancer therapy. Primary Objective:...

Study to Assess the Effectiveness and Safety of FLECTOR® Patch for Treatment of Acute Back Strain

Although approved for minor strains, sprains and contusions, FLECTOR® Patch has not been studied extensively in the setting of acute back strain. This study is being conducted as an init...

Study of the Safety and Efficacy of REGN475(SAR164877) in Patients With Pain Resulting From Thermal Injury

This is a randomized, double-blind, placebo-controlled, parallel-group, single-dose study of the efficacy of REGN475 in patients with pain due to thermal injury.

Medical and Biotech [MESH] Definitions

Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample.

The heat flow across a surface per unit area per unit time, divided by the negative of the rate of change of temperature with distance in a direction perpendicular to the surface. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)

A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.

A physical property showing different values in relation to the direction in or along which the measurement is made. The physical property may be with regard to thermal or electric conductivity or light refraction. In crystallography, it describes crystals whose index of refraction varies with the direction of the incident light. It is also called acolotropy and colotropy. The opposite of anisotropy is isotropy wherein the same values characterize the object when measured along axes in all directions.

A branch of engineering concerned with the design, construction, and maintenance of environmental facilities conducive to public health, such as water supply and waste disposal.

Search BioPortfolio:
Loading
Advertisement
Advertisement

Searches Linking to this Article