Prior probability (the pretest best guess) affects predictive values of diagnostic tests.

06:00 EDT 11th May 2011 | BioPortfolio

Summary of "Prior probability (the pretest best guess) affects predictive values of diagnostic tests."

Authors who publish evaluations of dichotomous (yes/no) diagnostic tests often include the predictive values of their test at a single prior probability (eg, the prevalence of the target disease within the evaluation data set). The objectives of this technical note are to demonstrate why single-probability predictive values are misleading and to show a better way to display positive predictive values (PPV) and negative predictive values (NPV) for a newly evaluated test. Secondly, this technical note will show readers how to calculate predictive values from only sensitivity and specificity for any desired prior probability. As prior probability increases from 0% to 100%, PPV increases from 0% to 100%, but NPV goes in the opposite direction (drops from 100% to 0%). Because prior probabilities vary so greatly across situations, predictive values should be provided in publications for the full range of potential prior probabilities (if provided at all). This is easily done with a 2-curve graph displaying the predictive values (y-axis) against the prior probability (x-axis).


Section of Epidemiology, Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.

Journal Details

This article was published in the following journal.

Name: Veterinary clinical pathology / American Society for Veterinary Clinical Pathology
ISSN: 0275-6382


PubMed Articles [13449 Associated PubMed Articles listed on BioPortfolio]

Utility of Pretest Probability and Exercise Treadmill Test in Korean Women with Suspected Coronary Artery Disease.

Pretest probability (PTP) and an exercise treadmill test (ETT) are recommended for the initial evaluation of possible coronary artery disease (CAD), but the applicability of these tests in Korean wome...

From P-Values to Objective Probabilities in Assessing Medical Treatments.

The assessment of the effectiveness of a treatment in a clinical trial, depends on calculating p-values. However, p-values are only indirect and partial indicators of a genuine effect. Particularly in...

Feature-based attention separately influences visual working memory resolution and encoding probability.

We use attention to select relevant portions of our environment for detailed processing-a process often directed by feature-based goals. Feature-based attention guides visual information processing by...

eComment. The combined use of clinical pretest probability and brain natriuretic peptide in predicting the risk of atrial fibrillation.

Dose-volume histogram prediction using density estimation.

Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method...

Clinical Trials [2784 Associated Clinical Trials listed on BioPortfolio]

Trial for the Use of Pretest Probability to Reduce Unnecessary Testing for Low-Risk Patients With Chest Pain

The purpose of this study is to evaluate if the implementation of quantitative pretest probability assessment will significantly reduce the unnecessary use of the intra-emergency departmen...

Neonatal Procalcitonin Intervention Study

In neonates, clinical signs and symptoms associated with early-onset sepsis are non-specific and currently available tests have poor positive and negative predictive values. The investigat...

D-dimer Testing Tailored to Clinical Pretest Probability in Suspected Pulmonary Embolism

Prospective, multicentre, cohort study assessing a diagnostic management strategy for suspected Pulmonary Embolism with independent central adjudication of outcomes

Understanding Probability in Children

To make medical decisions involving pros and cons, one also has to understand probability and percentages. This is a preliminary study to evaluate the ability of children to understand pro...

Predictive Values of Serotonergic Alterations for Outcome - 2

The purpose of this study is to evaluate the predictive value of serotonergic alterations for outcome.

Medical and Biotech [MESH] Definitions

In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.

Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters.

A range of values for a variable of interest, e.g., a rate, constructed so that this range has a specified probability of including the true value of the variable.

The complete summaries of the frequencies of the values or categories of a measurement made on a group of items, a population, or other collection of data. The distribution tells either how many or what proportion of the group was found to have each value (or each range of values) out of all the possible values that the quantitative measure can have.

The probability that an event will occur. It encompasses a variety of measures of the probability of a generally unfavorable outcome.