Advertisement

Topics

Molecular dynamics simulations of the structure and transport properties of tetra-butylphosphonium amino acid ionic liquids.

Summary of "Molecular dynamics simulations of the structure and transport properties of tetra-butylphosphonium amino acid ionic liquids."

Systematic molecular dynamics simulations are used to study the structure, dynamics and transport properties of the ionic liquids composed of the tetra-butylphosphonium ([TBP](+), or [P(C(4)H(9))(4)](+)) cation with six amino acid ([AA](-)) anions. The structural features of these ionic liquids were characterized by calculating the partial site-site radial distribution functions, g(r), and computing the dihedral angle distribution of n-butyl side chains in the [TBP](+) cations. The dynamics of the ionic liquids are described by studying the velocity autocorrelation function (VACF) and the mean-square displacement (MSD) for the centers of mass of the ions at different temperatures. The ionic diffusion coefficients and the electrical conductivities were evaluated from both the Einstein and Green-Kubo methods. The cross-correlation terms in the electric-current autocorrelation functions, which are an indication of the ion pair correlations, are investigated. The cationic transference numbers were also estimated to study the contributions of the anions and cations to the transport of charge in these ionic liquids. We determined the role of the amino acid anion structures on the dynamical behavior and the transport coefficients of this family of ionic liquids. In general, the MSD and self-diffusion coefficients of the relatively heavier non-planar [TBP](+) cations are smaller than those of the lighter amino acid anions. Introducing polar functional groups (acid or amide) in the side chain of [AA](-) decreases the diffusion coefficient and electrical conductivity of AAILs. The major factors for determining the magnitude of the transport coefficients are the chemical functionality and the length of the alkyl side chain of the [AA](-) anion of these [TBP][AA] ionic liquids.

Affiliation

Department of Chemistry and Supercomputing Center, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

Journal Details

This article was published in the following journal.

Name: Physical chemistry chemical physics : PCCP
ISSN: 1463-9084
Pages: 8826-37

Links

DeepDyve research library

PubMed Articles [28551 Associated PubMed Articles listed on BioPortfolio]

Insights on the mechanical behavior of keratin fibrils.

A computational molecular model of a truncated keratin protofibril (8 chains of hair keratin, PDB provided in Supplementary Material) was used, to run a series of steered molecular dynamics simulation...

Assessing the accuracy of improved force-matched water models derived from Ab initio molecular dynamics simulations.

The accuracy of water models derived from ab initio molecular dynamics simulations by means on an improved force-matching scheme is assessed for various thermodynamic, transport, and structural proper...

CAVER: Algorithms for Analyzing Dynamics of Tunnels in Macromolecules.

The biological function of a macromolecule often requires that a small molecule or ion is transported through its structure. The transport pathway often leads through void spaces in the structure. The...

Origin of Electrochemical, Structural and Transport Properties in Non-aqueous Zinc Electrolytes.

Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of non-aqueous zinc electrolytes. By examining electrochemical, structural and...

Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations.

We apply two recently developed computational methods, DFTB3 and VALBOND, to study copper oxidation/reduction processes in solution and protein. The properties of interest include the coordination str...

Clinical Trials [1993 Associated Clinical Trials listed on BioPortfolio]

Tetra-NIRS Clinical Study

The purpose of this experiment is to validate the previous clinical study results using the Tetra-NIRS as compared to the conventional UDS in the voiding procedure. The experiment will use...

TETRA (Terrestrial Trunked Radio)

The purpose of this study is to investigate if electromagnetic radiation from TETRA handset can influence cognitive function and the well-being of healthy adults. Furthermore, the purpose ...

Safety & Immunogenicity Study of Meningococcal Vaccine GSK134612 Given With Priorix-Tetra™ to 12-23 Month-Old Children

The purpose of this study is to demonstrate, in 12-23 month old children, the non-inferiority of the meningococcal vaccine 134612 given with Priorix-Tetra™. The Protocol Posting has bee...

Evaluation of the Versamed iVent in the Transport of Patients Receiving Mechanical Ventilation

The purpose of this study is to evaluate the use of the VersaMed iVent ventilator in the acute care setting, hypothesizing that, in comparison to the standard approach, the use of the Vers...

Matrix Aging and Aneurysm

During their biological life, proteins undergo molecular aging due to many non-enzymatic post-translational modifications that alter their structural and functional properties. These react...

Medical and Biotech [MESH] Definitions

The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include pharmacokinetics, dosage analysis, or drug administration analysis.

The mechanical laws of fluid dynamics as they apply to urine transport.

Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes.

The combination of hemodialysis and hemofiltration either simultaneously or sequentially. Convective transport (hemofiltration) may be better for removal of larger molecular weight substances and diffusive transport (hemodialysis) for smaller molecular weight solutes.

A computer simulation developed to study the motion of molecules over a period of time.

Quick Search
Advertisement
 


DeepDyve research library

Searches Linking to this Article