Systems mapping: how to improve the genetic mapping of complex traits through design principles of biological systems.

13:31 EST 26th November 2014 | BioPortfolio

Summary of "Systems mapping: how to improve the genetic mapping of complex traits through design principles of biological systems."


ABSTRACT:

BACKGROUND:
Every phenotypic trait can be viewed as a ``system" in which a group of interconnected components function synergistically to yield a unified whole. Once a system's components and their interactions have been delineated according to biological principles, we can manipulate and engineer functionally relevant components to produce a desirable system phenotype.
RESULTS:
We describe a conceptual framework for mapping quantitative trait loci (QTLs) that control complex traits by treating trait formation as a dynamic system. This framework, called systems mapping, incorporates a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function through genes, and provides a quantitative and testable platform for assessing the interplay between gene action and development. We applied systems mapping to analyze biomass growth data in a mapping population of soybeans and identified specific loci that are responsible for the dynamics of biomass partitioning to leaves, stem, and roots.
CONCLUSIONS:
We show that systems mapping implemented by design principles of biological systems is quite versatile for deciphering the genetic machineries for size-shape, structural-functional, sink-source and pleiotropic relationships underlying plant physiology and development. Systems mapping should enable geneticists to shed light on the genetic complexity of any biological system in plants and other organisms and predict its physiological and pathological states.

Affiliation

Journal Details

This article was published in the following journal.

Name: BMC systems biology
ISSN: 1752-0509
Pages: 84

Links

PubMed Articles [19477 Associated PubMed Articles listed on BioPortfolio]

Statistical method for mapping QTLs for complex traits based on two backcross populations.

Most important agronomic and quality traits of crops are quantitative in nature. The genetic variations in such traits are usually controlled by sets of genes called quantitative trait loci (QTLs), an...

Genetic Architecture of Winter Hardiness and Frost Tolerance in Triticale.

Abiotic stress experienced by autumn-sown crops during winter is of great economic importance as it can have a severe negative impact on yield. In this study, we investigated the genetic architecture ...

Whole-genome quantitative trait locus mapping reveals major role of epistasis on yield of rice.

Although rice yield has been doubled in most parts of the world since 1960s, thanks to the advancements in breeding technologies, the biological mechanisms controlling yield are largely unknown. To un...

Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.).

Wild soybean, the progenitor of cultivated soybean, is an important gene pool for ongoing soybean breeding efforts. To identify yield-enhancing quantitative trait locus (QTL) or gene from wild soybean...

Utility of High Resolution Electroanatomic Mapping of the Left Ventricle Using a Multispline Basket Catheter in a Swine Model of Chronic Myocardial Infarction.

Standard electroanatomic mapping systems use a single catheter to perform left ventricular (LV) substrate mapping. A new mapping system uses a 64-electrode mini-basket catheter to perform rapid automa...

Clinical Trials [2329 Associated Clinical Trials listed on BioPortfolio]

Gene Mapping for Quantitative Traits

To conduct gene mapping studies for quantitative traits.

The Use of Mole Mapping Diagrams to Increase Skin Self Examination Accuracy

This study aims to improve Skin Self-Examination accuracy by a simple cost effective intervention requiring participants to complete a mole-mapping diagram.

Axillary Reverse Mapping for Invasive Carcinoma of the Breast

Primary Objectives: - To determine the feasibility of axillary reverse mapping (ARM) in patients undergoing axillary lymph node dissection for breast cancer therapy. - T...

Lymphatic Mapping in Treating Patients With Stage I or Stage II Cancer of the Vulva

RATIONALE: Lymphatic mapping may improve the ability to detect cancer of the vulva. PURPOSE: This phase III trial is studying how well lymphatic mapping works in treating patients with st...

Wrist Cartilage - High Resolution in Vivo MR T2 Mapping- a Feasibility Study

Purpose:Evaluate the feasibility of T2 cartilage mapping on MRI of the wrist and correlate with T2 mapping of knee cartilage. Study protocol: Phase 1. 10 healthy volunteers, Phase 2. 10 v...

Medical and Biotech [MESH] Definitions

Methods used for studying the interactions of antibodies with specific regions of protein antigens. Important applications of epitope mapping are found within the area of immunochemistry.

Mapping of the linear order of genes on a chromosome with units indicating their distances by using methods other than genetic recombination. These methods include nucleotide sequencing, overlapping deletions in polytene chromosomes, and electron micrography of heteroduplex DNA. (From King & Stansfield, A Dictionary of Genetics, 5th ed)

Short tracts of DNA sequence that are used as landmarks in GENOME mapping. In most instances, 200 to 500 base pairs of sequence define a Sequence Tagged Site (STS) that is operationally unique in the human genome (i.e., can be specifically detected by the polymerase chain reaction in the presence of all other genomic sequences). The overwhelming advantage of STSs over mapping landmarks defined in other ways is that the means of testing for the presence of a particular STS can be completely described as information in a database.

Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases.

Two-dimensional separation and analysis of nucleotides.

Search BioPortfolio:
Loading
Advertisement

Relevant Topic

Bioinformatics
Latest News Clinical Trials Research Drugs Reports Corporate
Bioinformatics is the application of computer software and hardware to the management of biological data to create useful information. Computers are used to gather, store, analyze and integrate biological and genetic information which can then be applied...

Advertisement