The Green Microalga Chlorella saccharophila as a Suitable Source of Oil for Biodiesel Production.

12:10 EDT 30th July 2015 | BioPortfolio

Summary of "The Green Microalga Chlorella saccharophila as a Suitable Source of Oil for Biodiesel Production."

The aim of this study was to investigate the potential of the green microalga Chlorella saccharophila as a source of oil for biodiesel production. We evaluated for the first time, the effect of salinity and/or nitrogen depletion (ND) on cell growth, lipid accumulation and lipid profile in this microalga. The fatty acid methyl esters (FAME) identified for C. saccharophila in this study consisted of C-16:0, C-18:0, C-18:1 cis, and C-18:1 trans. Among these, C-18:1 (indicator of biodiesel quality) was the main FAME found, representing approximately 76 and 80% of total FAME under normal and ND growing conditions, respectively. Under a normal growing condition this microalga showed 154.63 mg l(-1) d(-1), 63.33 mg l(-1) d(-1), and 103.73 mg l(-1) of biomass productivity, lipid productivity, and FAME yield, respectively. The higher biomass productivity (159.58 mg l(-1) d(-1)), lipid productivity (99.33 mg l(-1) d(-1)), and FAME yield (315.53 mg l(-1)) were obtained under the ND treatment. In comparison to other related studies, our results suggest that C. saccharophila can be considered as a suitable source of oil for biodiesel production.

Affiliation

Centro de Investigación Científica de Yucatán (CICY), Unidad de Biotecnología, Mérida, Mexico, vicky@cicy.mx.

Journal Details

This article was published in the following journal.

Name: Current microbiology
ISSN: 1432-0991
Pages:

Links

PubMed Articles [12576 Associated PubMed Articles listed on BioPortfolio]

Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.

Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried...

Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production.

The development of a culture system for Chlorella sp. GD to efficiently produce biomass and oil for biodiesel production was investigated. Chlorella sp. GD was cultivated with 0%, 25%, 50%, 75% and 10...

Improving Cell Growth and Lipid Accumulation in Green Microalgae Chlorella sp. via UV Irradiation.

Microalgae with high biomass and high lipid content are the ideal feedstock for biodiesel production. To obtain such microalgae, ultraviolet (UV) irradiation was applied to Chlorella sp. to induce mut...

Induction of D-xylose uptake and expression of NAD(P)H-linked xylose reductase and NADP + -linked xylitol dehydrogenase in the oleaginous microalga Chlorella sorokiniana.

The heterotrophic and mixotrophic culture of oleaginous microalgae is a promising process to produce biofuel feedstock due to the advantage of fast growth. Various organic carbons have been explored f...

Three stage cultivation process of facultative strain of Chlorella sorokiniana for treating dairy farm effluent and lipid enhancement.

Reserve lipids of microalgae are promising for biodiesel production. However, economically feasible and sustainable energy production from microalgae requires optimization of cultivation conditions fo...

Clinical Trials [1173 Associated Clinical Trials listed on BioPortfolio]

New Imaging Techniques in the Evaluation of Patients With Ectopic Cushing Syndrome

Cushing Syndrome is an endocrine disorder causing an over production of the hormone cortisol. Cortisol is produced in the adrenal gland as a response to the production of ACTH in the pitu...

Green Tea Anticancer Mechanisms in Smokers

The purpose of this study is to determine whether green tea may lower the risk of certain cancers.

Cardioprotective Effects of Green Tea Versus Maté Intake

The investigators aim to study the effects of green tea and maté consumption on lipid and inflammatory profiles in dyslipidemic and overweight subjects.

Green Tea Extract (Polyphenon E) in Preventing Cancer in Healthy Participants

RATIONALE: Green tea extract (Polyphenon E) contains ingredients that may prevent the development of cancer. PURPOSE: This phase I trial is studying how well green tea extract works in pr...

Efficacy and Safety of Green Tea Polyphenol in De Novo Parkinson’s Disease Patients

The purpose of this study is to determine whether Green Tea Polyphenol, an extraction from Green Tea is effective and safe in the treatment of De Novo Parkinson’s disease Patients with...

Medical and Biotech [MESH] Definitions

Nonmotile unicellular green algae potentially valuable as a source of high-grade protein and B-complex vitamins.

The dry cells of any suitable strain of SACCHAROMYCES CEREVISIAE or CANDIDA. It can be obtained as a by-product from the brewing of beer or by growing on media not suitable for beer production. Dried yeast serves as a source of protein and VITAMIN B COMPLEX.

A species of green microalgae in the family Chlorellaceae. It is used as a model organism for PHOTOSYNTHESIS, and as a food supplement (DIETARY SUPPLEMENTS).

Processes by which phototrophic organisms use sunlight as their primary energy source. Contrasts with chemotrophic processes which do not depend on light and function in deriving energy from exogenous chemical sources. Photoautotrophy (or photolithotrophy) is the ability to use sunlight as energy to fix inorganic nutrients to be used for other organic requirements. Photoautotrophs include all green plants, GREEN ALGAE; CYANOBACTERIA, and green and PURPLE SULFUR BACTERIA. Photoheterotrophs or photoorganotrophs require a supply of organic nutrients for their organic requirements but use sunlight as their primary energy source; examples include certain PURPLE NONSULFUR BACTERIA. Depending on environmental conditions some organisms can switch between different nutritional modes (AUTOTROPHY; HETEROTROPHY; chemotrophy; or phototrophy) to utilize different sources to meet their nutrients and energy requirements.

Algae of the division Chlorophyta, in which the green pigment of CHLOROPHYLL is not masked by other pigments. Green algae have over 7000 species and live in a variety of primarily aquatic habitats. Only about ten percent are marine species, most live in freshwater. They are more closely related to the green vascular land PLANTS than any other group of algae.


Advertisement
 
Advertisement
 

Searches Linking to this Article