Regulation of cardiac excitability by protein kinase C isozymes.

09:53 EDT 1st August 2015 | BioPortfolio

Summary of "Regulation of cardiac excitability by protein kinase C isozymes."

Cardiac excitability and electrical activity are determined by the sum of individual ion channels, gap junctions and exchanger activities. Electrophysiological remodeling during heart disease involves changes in membrane properties of cardiomyocytes and is related to higher prevalence of arrhythmia-associated morbidity and mortality. Pharmacological and genetic manipulation of cardiac cells as well as animal models of cardiovascular diseases are used to identity changes in electrophysiological properties and the molecular mechanisms associated with the disease. Protein kinase C (PKC) and several other kinases play a pivotal role in cardiac electrophysiological remodeling. Therefore, identifying specific therapies that regulate these kinases is the main focus of current research. PKC, a family of serine/threonine kinases, has been implicated as potential signaling nodes associated with biochemical and biophysical stress in cardiovascular diseases. In this review, we describe the role of PKC isozymes that are involved in cardiac excitability and discuss both genetic and pharmacological tools that were used, their attributes and limitations. Selective and effective pharmacological interventions to normalize cardiac electrical activities and correct cardiac arrhythmias will be of great clinical benefit.

Affiliation

Stanford University, School of Medicine, Stanford CA.

Journal Details

This article was published in the following journal.

Name: Frontiers in bioscience (Scholar edition)
ISSN: 1945-0524
Pages: 532-46

Links

PubMed Articles [19972 Associated PubMed Articles listed on BioPortfolio]

Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy.

Nuclear import of protein kinase D1 (PKD1) is an important event in the transcriptional regulation of cardiac gene reprogramming leading to the hypertrophic growth response, however, little is known a...

Cardiac MyBP-C Regulates the Rate and Force of Contraction in Mammalian Myocardium.

Cardiac myosin-binding protein-C (cMyBP-C) is a thick filament-associated protein that seems to contribute to the regulation of cardiac contraction through interactions with either myosin or actin or ...

Protein kinase C epsilon phosphorylates α4 β2 nicotinic acetylcholine receptors and promotes recovery from desensitization.

Nicotinic acetylcholine receptor (nAChR) recovery from desensitization is modulated by protein kinase C (PKC), but the PKC isozymes and the phosphorylation sites involved have not been identified. We ...

Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy.

Activation of Ca2+/Calmodulin protein kinase II (CaMKII) is an important step in signaling of cardiac hypertrophy. The molecular mechanisms by which CaMKII integrates with other pathways in the heart ...

Deletion of PDK1 Causes Cardiac Sodium Current Reduction in Mice.

The AGC protein kinase family regulates multiple cellular functions. 3-phosphoinositide-dependent protein kinase-1 (PDK1) is involved in the pathogenesis of arrhythmia, and its downstream factor, Fork...

Clinical Trials [3168 Associated Clinical Trials listed on BioPortfolio]

Impact of General Anaesthetics on Excitability of the Peripheral Sensory Nerve

The aim of this study is to investigate the effect of general anaesthetics on nerve excitability. We use the method of threshold tracking to measure selected parameters of nerve excitabili...

Genetic Analysis of African-Americans With High Blood Pressure

The purpose of this study is to learn if kinase, a protein found in the heart, contributes to thickening of the heart muscle in people with high blood pressure. A protein called myosin ca...

Fatty Acid Oxidation Disorders & Body Weight Regulation Grant

Several hormones involved in body weight regulation increase the investigators ability to burn fat for energy. The purpose of this study is to investigate how burning fat for energy may af...

MODULA Modul 7 VRR: Correlation Between Ventricular Rate Regulation (VRR) and the Percentage of Biventricular Pacing in Cardiac Resynchronization Therapy (CRT) Patients With Atrial Fibrillation

This study will look at the correlation between ventricular rate regulation (VRR) and the percentage of biventricular pacing as well as subjective quality of life and level of physical abi...

Gastrointestinal Hormonal Regulation of Obesity

The objective of this study is to test and determine whether a high protein diet is efficacious, safe and beneficial to curtail food intake and body weight in obese adult human patients an...

Medical and Biotech [MESH] Definitions

A G-protein-coupled receptor kinase subtype that is primarily expressed in the MYOCARDIUM and may play a role in the regulation of cardiac functions.

A family of ribosomal protein S6 kinases that are structurally distinguished from RIBOSOMAL PROTEIN S6 KINASES, 70-KDA by their apparent molecular size and the fact they contain two functional kinase domains. Although considered RIBOSOMAL PROTEIN S6 KINASES, members of this family are activated via the MAP KINASE SIGNALING SYSTEM and have been shown to act on a diverse array of substrates that are involved in cellular regulation such as RIBOSOMAL PROTEIN S6 and CAMP RESPONSE ELEMENT-BINDING PROTEIN.

A 38-kDa mitogen-activated protein kinase that is abundantly expressed in a broad variety of cell types. It is involved in the regulation of cellular stress responses as well as the control of proliferation and survival of many cell types. The kinase activity of the enzyme is inhibited by the pyridinyl-imidazole compound SB 203580.

A structurally-diverse family of intracellular-signaling adaptor proteins that selectively tether specific protein kinase A subtypes to distinct subcellular sites. They play a role in focusing the PROTEIN KINASE A activity toward relevant substrates. Over fifty members of this family exist, most of which bind specifically to regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASE TYPE II such as CAMP PROTEIN KINASE RIIALPHA or CAMP PROTEIN KINASE RIIBETA.

A protein kinase C subtype that was originally characterized as a CALCIUM-independent, serine-threonine kinase that is activated by PHORBOL ESTERS and DIACYLGLYCEROLS. It is targeted to specific cellular compartments in response to extracellular signals that activate G-PROTEIN-COUPLED RECEPTORS; TYROSINE KINASE RECEPTORS; and intracellular protein tyrosine kinase.


Advertisement
 
Advertisement
 

Searches Linking to this Article