Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury.

00:38 EDT 3rd September 2014 | BioPortfolio

Summary of "Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury."

Diffusion Kurtosis Imaging (DKI) provides quantifiable information on the non-Gaussian behavior of water diffusion in biological tissue. Changes in water diffusion tensor imaging (DTI) parameters and DKI parameters in several white and gray matter regions were investigated in a mild controlled cortical impact (CCI) injury rat model at both the acute (2 h) and the sub-acute (7 days) stages following injury. Mixed model ANOVA analysis revealed significant changes in temporal patterns of both DTI and DKI parameters in the cortex, hippocampus, external capsule and corpus callosum. Post-hoc tests indicated acute changes in mean diffusivity (MD) in the bilateral cortex and hippocampus (p<0.0005) and fractional anisotropy (FA) in ipsilateral cortex (p<0.0005), hippocampus (p=0.014), corpus callosum (p=0.031) and contralateral external capsule (p=0.011). These changes returned to baseline by the sub-acute stage. However, mean kurtosis (MK) was significantly elevated at the sub-acute stages in all ipsilateral regions and scaled inversely with the distance from the impacted site (cortex and corpus callosum: p<0.0005; external capsule: p=0.003; hippocampus: p=0.011). Further, at the sub-acute stage increased MK was also observed in the contralateral regions compared to baseline (cortex: p=0.032; hippocampus: p=0.039) while no change was observed with MD and FA. An increase in mean kurtosis was associated with increased reactive astrogliosis from immunohistochemistry analysis. Our results suggest that DKI is sensitive to microstructural changes associated with reactive astrogliosis which may be missed by standard DTI parameters alone. Monitoring changes in MK allows the investigation of molecular and morphological changes in vivo due to reactive astrogliosis and may complement information available from standard DTI parameters. To date the use of diffusion tensor imaging has been limited to study changes in white matter integrity following traumatic insults. Given the sensitivity of DKI to detect microstructural changes even in the gray matter in vivo, allows the extension of the technique to understand patho-morphological changes in the whole brain following a traumatic insult.

Affiliation

Core for Translational Research in Imaging, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Journal Details

This article was published in the following journal.

Name: NeuroImage
ISSN: 1095-9572
Pages: 467-77

Links

PubMed Articles [18070 Associated PubMed Articles listed on BioPortfolio]

Whole-Body Diffusion Kurtosis Imaging: Initial Experience on Non-Gaussian Diffusion in Various Organs.

Diffusion kurtosis imaging (DKI) is based on a non-Gaussian diffusion model that should inherently better account for restricted water diffusion within the complex microstructure of most tissues than ...

Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain.

OBJECTIVE. Diffusion kurtosis imaging is an emerging technique based on the non-gaussian diffusion of water in biologic systems. The purpose of this article is to introduce and discuss the ongoing res...

Double-pulsed diffusional kurtosis imaging.

Diffusional kurtosis imaging (DKI) is extended to double-pulsed-field-gradient (d-PFG) diffusion MRI sequences. This gives a practical approach for acquiring and analyzing d-PFG data. In particular, t...

Diffusion-weighted imaging and demyelinating diseases: new aspects of an old advanced sequence.

OBJECTIVE. The purpose of this article is to discuss classic applications in diffusion-weighted imaging (DWI) in demyelinating disease and progression of DWI in the near future. CONCLUSION. DWI is an ...

Leading non-Gaussian corrections for diffusion orientation distribution function.

An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed from the diffusion an...

Clinical Trials [2453 Associated Clinical Trials listed on BioPortfolio]

Evaluation of Nerve Regeneration After Nerve Transsection Using (Diffusion-tensor Magnetic Resonance Imaging) DTI MR Imaging

To prospectively evaluate the nerve regeneration after traumatic nerve transsection using diffusion tensor magnetic resonance imaging (DTI MR imaging).

Efficacy of Non Contrast DWI(Diffusion Weighted Imaging) Imaging Compared to DMR-DE

To discover new information about MRI(magnetic resonance imaging)called DWI (diffusion weighted imaging) and its ability to diagnose cardiac scarring. CMR-DE (cardiac magnetic resonance w...

Diffusion-Tensor Magnetic Resonance Imaging (MRI) and the Evaluation of Perinatal Brain Injury

The researchers' objective is to use diffusion-tensor imaging (DTI) to evaluate infants diagnosed with cerebral white matter injury during the neonatal period and identify antenatal risk f...

Identification of Stroke Patients ≤ 3 and ≤ 4.5 Hours of Symptom Onset by Fluid Attenuated Inversion Recovery (FLAIR) Imaging and Diffusion Weighted Imaging (DWI)

The aim of the study is to evaluate the use of combined fluid attenuated inversion recovery (FLAIR) imaging and diffusion weighted imaging (DWI) as surrogate marker of lesion age within th...

Magnetic Resonance Imaging in Evaluating Response to RadiationTherapy in Patients With High Grade Glioma

RATIONALE: Diagnostic procedures, such as magnetic resonance imaging, may help doctors predict a patient's response to treatment and help plan the best treatment. PURPOSE: This clinical tr...

Medical and Biotech [MESH] Definitions

The use of diffusion ANISOTROPY data from diffusion magnetic resonance imaging results to construct images based on the direction of the faster diffusing molecules.

A diagnostic technique that incorporates the measurement of molecular diffusion (such as water or metabolites) for tissue assessment by MRI. The degree of molecular movement can be measured by changes of apparent diffusion coefficient (ADC) with time, as reflected by tissue microstructure. Diffusion MRI has been used to study BRAIN ISCHEMIA and tumor response to treatment.

Devices used in a technique by which cells or tissues are grown in vitro or, by implantation, in vivo within chambers permeable to diffusion of solutes across the chamber walls. The chambers are used for studies of drug effects, osmotic responses, cytogenic and immunologic phenomena, metabolism, etc., and include tissue cages.

The use of molecularly targeted imaging probes to localize and/or monitor biochemical and cellular processes via various imaging modalities that include RADIONUCLIDE IMAGING; ULTRASONOGRAPHY; MAGNETIC RESONANCE IMAGING; fluorescence imaging; and MICROSCOPY.

Non-invasive imaging of cells that have been labeled non-destructively, such as with nanoemulsions or reporter genes that can be detected by molecular imaging, to monitor their location, viability, cell lineage expansion, response to drugs, movement, or other behaviors in vivo.

Search BioPortfolio:
Advertisement

Relevant Topic

Alzheimer's Disease
Latest News Clinical Trials Research Drugs Reports Corporate
Of all the types of Dementia, Alzheimer's disease is the most common, affecting around 465,000 people in the UK. Neurons in the brain die, becuase  'plaques' and 'tangles' (mis-folded proteins) form in the brain. People with Al...

Advertisement