Molecular mechanisms of urea transport in health and disease.

19:33 EDT 29th August 2015 | BioPortfolio

Summary of "Molecular mechanisms of urea transport in health and disease."

In the late 1980s, urea permeability measurements produced values that could not be explained by paracellular transport or lipid phase diffusion. The existence of urea transport proteins were thus proposed and less than a decade later, the first urea transporter was cloned. The family of urea transporters has two major subgroups, designated SLC14A1 (or UT-B) and Slc14A2 (or UT-A). UT-B and UT-A gene products are glycoproteins located in various extra-renal tissues however, a majority of the resulting isoforms are found in the kidney. The UT-B (Slc14A1) urea transporter was originally isolated from erythrocytes and two isoforms have been reported. In kidney, UT-B is located primarily in the descending vasa recta. The UT-A (Slc14A2) urea transporter yields six distinct isoforms, of which three are found chiefly in the kidney medulla. UT-A1 and UT-A3 are found in the inner medullary collecting duct (IMCD), while UT-A2 is located in the thin descending limb. These transporters are crucial to the kidney's ability to concentrate urine. The regulation of urea transporter activity in the IMCD involves acute modification through phosphorylation and subsequent movement to the plasma membrane. UT-A1 and UT-A3 accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation of the urea transporters in the IMCD involves altering protein abundance in response to changes in hydration status, low protein diets, or adrenal steroids. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new genetically engineered mouse models are being developed to study these transporters.


Renal Division, Department of Medicine, and Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.

Journal Details

This article was published in the following journal.

Name: Pflugers Archiv : European journal of physiology
ISSN: 1432-2013


PubMed Articles [44227 Associated PubMed Articles listed on BioPortfolio]

Computation and Simulation of the Structural Characteristics of the Kidney Urea Transporter and Behaviors of Urea Transport.

Urea transporters are a family of membrane proteins that transport urea molecules across cell membranes and play important roles in a variety of physiological processes. Although the crystal structure...

Water and solute transport across the peritoneal membrane.

We review the molecular mechanisms of peritoneal transport and discuss how a better understanding of these mechanisms is relevant for dialysis therapy.

Reconstitution of Nucleocytoplasmic Transport Using Digitonin-Permeabilized Cells.

Nucleocytoplasmic transport is crucial not only for basic cellular activities but also for the physiological adaptation of cells to various environmental stimuli that affect development, cell-fate det...

Clinically Relevant Mechanisms of Lipid Synthesis, Transport, and Storage.

Lipids not only are fundamental nutrients but also serve as basic structural components of cells and as multifunctional signaling molecules. Lipid metabolism pathways underlie basic processes in healt...

Exploring the Counteracting Mechanism of Trehalose on Urea Conferred Protein Denaturation: A Molecular Dynamics Simulation Study.

To provide underlying mechanism of the inhibiting effect of trehalose on the urea denatured protein, we perform classical molecular dynamics simulations of N-methylacetamide (NMA) in aqueous urea and/...

Clinical Trials [4960 Associated Clinical Trials listed on BioPortfolio]

Study to Evaluate 13 C Isotope Ratio Measurement for Urea Cycle Capacity Assessment

In this short-term study a method for the evaluation of the metabolic competency of the urea cycle in vivo will be assessed. In order to monitor the efficacy of new treatment options for p...

Study of Treatment and Metabolism in Patients With Urea Cycle Disorders

RATIONALE: The urea cycle is the process in which nitrogen is removed from the blood and converted into urea, a waste product found in urine . Urea cycle disorders are inherited disorders ...

The Influence of Compression Stockings on Skin's Barrier Function at Patients With Chronic Venous Disease

The purpose of this study is to investigate if wearing of compression stockings influences the skin moisture. Conservative stockings are compared with urea containing compression stockings...

Dose-Escalation Safety Study of HPN-100 to Treat Urea Cycle Disorders

The purpose of this study is to determine whether HPN-100 is safe and tolerable in subjects with Urea Cycle Disorders.

Molecular Phenotypes for Cystic Fibrosis Lung Disease

The purpose of this study is to develop an integrated view of molecular mechanisms underlying CF lung disease severity.

Medical and Biotech [MESH] Definitions

The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.

A class of drugs producing both physiological and psychological effects through a variety of mechanisms. They can be divided into "specific" agents, e.g., affecting an identifiable molecular mechanism unique to target cells bearing receptors for that agent, and "nonspecific" agents, those producing effects on different target cells and acting by diverse molecular mechanisms. Those with nonspecific mechanisms are generally further classed according to whether they produce behavioral depression or stimulation. Those with specific mechanisms are classed by locus of action or specific therapeutic use. (From Gilman AG, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p252)

The process of moving specific RNA molecules from one cellular compartment or region to another by various sorting and transport mechanisms.

Gated transport mechanisms by which proteins or RNA are moved across the NUCLEAR MEMBRANE.

The urea concentration of the blood stated in terms of nitrogen content. Serum (plasma) urea nitrogen is approximately 12% higher than blood urea nitrogen concentration because of the greater protein content of red blood cells. Increases in blood or serum urea nitrogen are referred to as azotemia and may have prerenal, renal, or postrenal causes. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)


Relevant Topics

Latest News Clinical Trials Research Drugs Reports Corporate
Within medicine, nutrition (the study of food and the effect of its components on the body) has many different roles. Appropriate nutrition can help prevent certain diseases, or treat others. In critically ill patients, artificial feeding by tubes need t...

Latest News Clinical Trials Research Drugs Reports Corporate
Bioinformatics is the application of computer software and hardware to the management of biological data to create useful information. Computers are used to gather, store, analyze and integrate biological and genetic information which can then be applied...

Renal disease
Latest News Clinical Trials Research Drugs Reports Corporate
Chronic kidney disease (CKD), also known as chronic renal disease, is a progressive loss in renal function over a period of months or years. The symptoms of worsening kidney function are non-specific, and might include feeling generally unwell and experi...


Searches Linking to this Article