The NRT2.5 and NRT2.6 genes are involved in growth promotion of Arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196.

07:00 EST 12th February 2013 | BioPortfolio

Summary of "The NRT2.5 and NRT2.6 genes are involved in growth promotion of Arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196."

The Phyllobacterium brassicacearum STM196 strain stimulates Arabidopsis thaliana growth and antagonizes high nitrate inhibition of lateral root development. A previous study identified two STM196-responsive genes, NRT2.5 and NRT2.6 (Mantelin et al., 2006, Planta 223: 591-603). We investigated the role of NRT2.5 and NRT2.6 in the plant response to STM196 using single and double Arabidopsis mutants. The single mutants were also crossed with an nrt2.1 mutant, lacking the major nitrate root transporter, to distinguish the effects of NRT2.5 and NRT2.6 from potential indirect effects of nitrate pools. The nrt2.5 and nrt2.6 mutations abolished the plant growth and root system architecture responses to STM196. The determination of nitrate content revealed that NRT2.5 and NRT2.6 do not play an important role in nitrate distribution between plant organs. Conversely, NRT2.5 and NRT2.6 appeared to play a role in the plant response independent of nitrate uptake. Using a nitrate reductase mutant, it was confirmed that the NRT2.5/NRT2.6-dependent plant signalling pathway is independent of nitrate-dependent regulation of root development. Our findings demonstrate that NRT2.5 and NRT2.6, which are preferentially expressed in leaves, play an essential role in plant growth promotion by the rhizospheric bacterium STM196.


Laboratory of Tropical and Mediterranean Symbioses (UMR113, Université Montpellier 2, Institut de Recherche pour le Développement, Cirad Montpellier SupAgro, Institut National de la Recherche Agronomique), Université Montpellier 2, CC002, Place E. Bata

Journal Details

This article was published in the following journal.

Name: The New phytologist
ISSN: 1469-8137


DeepDyve research library

PubMed Articles [22325 Associated PubMed Articles listed on BioPortfolio]

Members of BTB gene family regulate negatively nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana and Oryza sativa.

Development of crops with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. However, achieving this goal has proven difficult due to NUE is a complex trait encompassing ...

Draft Genome Sequence of the Biocontrol and Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens strain UM270.

The Pseudomonas fluorescens strain UM270 was isolated form the rhizosphere of wild Medicago spp. A previous work has shown that this pseudomonad isolate was able to produce diverse diffusible and vola...

MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development in Arabidopsis.

MicroRNAs (miRNAs) are endogenous, non-coding small RNAs which function as critical regulators of gene expression. In plants, miRNAs have highlighted their potential as regulators of growth, developme...

A role for CK2 β subunit 4 in the regulation of plant growth, cadmium accumulation and H2O2 content under cadmium stress in Arabidopsis thaliana.

Protein kinase CK2, which consists of two α and two β subunits, plays an essential role in plant development and is implicated in plant responses to abiotic stresses, including salt and heat. Howeve...

Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant.

This study showed that Bacillus amyloliquefaciens UCMB5113 colonizing Arabidopsis roots changed root structure and promoted growth implying the usability of this strain as a novel tool to support sust...

Clinical Trials [4422 Associated Clinical Trials listed on BioPortfolio]

Genetic Basis for Heterogeneity in Response of Plasma Lipids to Plant Sterols

The present study's goal is to identify a genetic basis for variations in responsiveness to plant sterol use, and elucidate which components of control of cholesterol metabolism associate ...

Role of Genetic Factors in the Development of Lung Disease

This study is designed to evaluate the genetics involved in the development of lung disease by surveying genes involved in the process of breathing and examining the genes in lung cells of...

The Influence of Dietary Plant Sterols and Plant Stanols on Cholesterol and Plant Sterol Levels in Atheromatous Plaques

This study aims to explore whether the increased supply of dietary plant sterols and plant stanols have any influence on serum levels of phytosterols and on consistency of carotid atheroma...

Gastric Emptying and Gallbladder Motility Study

Background of the study: Plant sterols can play an important role in lowering plasma cholesterol. The extent to which plant sterols can reduce plasma cholesterol levels depends on the int...

Lipid-lowering Effect of Plant Stanol Ester Yoghurt Drinks

The aim is to investigate the effects of yoghurt drinks containing two doses of plant stanol ester either with or without added camelina oil on the serum cholesterol levels in moderately h...

Medical and Biotech [MESH] Definitions

Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments.

A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.

A plant homeotic protein involved in the development of stamens and carpels of Arabidopsis thaliana. It is a DNA-binding protein that contains the MADS-box domain. It is one of the four founder proteins that structurally define the superfamily of MADS DOMAIN PROTEINS.

Genes that inhibit expression of the tumorigenic phenotype. They are normally involved in holding cellular growth in check. When tumor suppressor genes are inactivated or lost, a barrier to normal proliferation is removed and unregulated growth is possible.

Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes.

Quick Search

DeepDyve research library

Searches Linking to this Article