Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping.

07:00 EST 15th February 2013 | BioPortfolio

Summary of "Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping."


Complex binary traits are influenced by many factors including the main effects of many quantitative trait loci (QTLs), the epistatic effects involving more than one QTLs, environmental effects and the effects of gene-environment interactions. Although a number of QTL mapping methods for binary traits have been developed, there still lacks an efficient and powerful method that can handle both main and epistatic effects of a relatively large number of possible QTLs.
In this paper, we use a Bayesian logistic regression model as the QTL model for binary traits that includes both main and epistatic effects. Our logistic regression model employs hierarchical priors for regression coefficients similar to the ones used in the Bayesian LASSO linear model for multiple QTL mapping for continuous traits. We develop efficient empirical Bayesian algorithms to infer the logistic regression model. Our simulation study shows that our algorithms can easily handle a QTL model with a large number of main and epistatic effects on a personal computer, and outperform five other methods examined including the LASSO, HyperLasso, BhGLM, RVM and the single-QTL mapping method based on logistic regression in terms of power of detection and false positive rate. The utility of our algorithms is also demonstrated through analysis of a real data set. A software package implementing the empirical Bayesian algorithms in this paper is freely available upon request.
The EBLASSO logistic regression method can handle a large number of effects possibly including the main and epistatic QTL effects, environmental effects and the effects of gene-environment interactions. It will be a very useful tool for multiple QTLs mapping for complex binary traits.


Journal Details

This article was published in the following journal.

Name: BMC genetics
ISSN: 1471-2156
Pages: 5


DeepDyve research library

PubMed Articles [12894 Associated PubMed Articles listed on BioPortfolio]

Adaptive prior weighting in generalized regression.

The prior distribution is a key ingredient in Bayesian inference. Prior information on regression coefficients may come from different sources and may or may not be in conflict with the observed data....

EBglmnet: a comprehensive R package for sparse generalized linear regression models.

EBglmnet is an R package implementing empirical Bayesian method with both lasso (EBlasso) and elastic net (EBEN) priors for generalized linear models. In our previous studies, both EBlasso and EBEN ou...

Combining different functions to describe milk, fat, and protein yield in goats using Bayesian multiple-trait random regression models.

We proposed multiple-trait random regression models (MTRRM) combining different functions to describe milk yield (MY) and fat (FP) and protein (PP) percentage in dairy goat genetic evaluation by using...

Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L1/2 +2 Regularization.

Cancer classification and feature (gene) selection plays an important role in knowledge discovery in genomic data. Although logistic regression is one of the most popular classification methods, it do...

Molecular Predictors of Long-Term Survival in Glioblastoma Multiforme Patients.

Glioblastoma multiforme (GBM) is the most common and aggressive adult primary brain cancer, with 3 years) to identify biomarkers associated with prolonged survival, and to assess the possible similari...

Clinical Trials [3016 Associated Clinical Trials listed on BioPortfolio]

Study of Safety and Efficacy of BCL201 and Idelalisib in Patients With FL and MCL

This is a phase Ib multi-center, open-label study: escalation part followed by expansion part. The primary purpose of the Phase Ib CBCL201X2102C study is to characterize the safety and tol...

Model-Free Time Curves for Longitudinal Data Analysis

To enhance statistical methods for epidemiological studies by extending the Disturbed Highest Derivative Polynomial (DHDP) to models for binary-logistic and Poisson data and by including r...

Discrepancies Between Patients and Physicians in Their Perceptions of Rheumatoid Arthritis Disease Activity

Patients and physicians often differ in their perceptions of rheumatoid arthritis (RA) disease activity, as quantified by the patient's global assessment (PGA) and by the evaluator's globa...

Knowledge Attitudes Beliefs and Practices Relative to HIV Among Sex Workers in French Guiana

The aim was to determine the knowledge attitudes, beliefs, and practices regarding HIV in a population of sex workers in French Guiana and in the Brazilian border town of Oiapoque. A stand...

Phase I/II Study of BLZ945 Single Agent or BLZ945 in Combination With PDR001 in Advanced Solid Tumors

The purpose of this first-in-human (FIH) study of BLZ945 given as a single agent or in combination with PDR001 is to characterize the safety, tolerability, pharmacokinetics (PK), pharmacod...

Medical and Biotech [MESH] Definitions

Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable.

Locations, on the GENOME, of GENES or other genetic elements that encode or control the expression of a quantitative trait (QUANTITATIVE TRAIT, HERITABLE).

The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.

A syndrome of multiple abnormalities characterized by the absence or hypoplasia of the PATELLA and congenital nail dystrophy. It is a genetically determined autosomal dominant trait.

Detailed account or statement or formal record of data resulting from empirical inquiry.

Quick Search

DeepDyve research library

Relevant Topic

Bioinformatics is the application of computer software and hardware to the management of biological data to create useful information. Computers are used to gather, store, analyze and integrate biological and genetic information which can then be applied...

Searches Linking to this Article