Advertisement

Topics

Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas.

08:00 EDT 13th March 2013 | BioPortfolio

Summary of "Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas."

Plasmonic antennas enable the conversion of light from free space into subwavelength volumes and vice versa, which facilitates the manipulation of light at the nanoscale. Dynamic control of the properties of antennas is desirable for many applications, including biochemical sensors, reconfigurable meta-surfaces and compact optoelectronic devices. The combination of metallic structures and graphene, which has gate-voltage dependent optical properties, is emerging as a possible platform for electrically controlled plasmonic devices. In this paper, we demonstrate in situ control of antennas using graphene as an electrically tunable load in the nanoscale antenna gap. In our experiments, we demonstrate electrical tuning of graphene-loaded antennas over a broad wavelength range of 650 nm (∼140 cm(-1), ∼10% of the resonance frequency) in the mid-infrared (MIR) region. We propose an equivalent circuit model to quantitatively analyze the tuning behavior of graphene-loaded antenna pairs and derive an analytical expression for the tuning range of resonant wavelength. In a separate experiment, we used doubly resonant antenna arrays to achieve MIR optical intensity modulation with maximum modulation depth of more than 30% and bandwidth of 600 nm (∼100 cm(-1), 8% of the resonance frequency). This study shows that combining graphene with metallic nanostructures provides a route to electrically tunable optical and optoelectronic devices.

Affiliation

School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts, 02138, United States.

Journal Details

This article was published in the following journal.

Name: Nano letters
ISSN: 1530-6992
Pages: 1257-1264

Links

DeepDyve research library

PubMed Articles [6386 Associated PubMed Articles listed on BioPortfolio]

Piezoelectric tuning of narrowband perfect plasmonic absorbers via an optomechanic cavity.

Optical antennas enable the control of light-matter interaction on the nanometer scale. Efficient on-chip electrical switching of plasmonic resonances is a crucial step toward the integration of optic...

Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab.

The independent excitation and tuning of double plasmonic waves are realized in a free-standing graphene-spacer-grating-spacer-graphene (GSGSG) hybrid slab, which consists of two graphene field effect...

Thermoelectric detection and imaging of propagating graphene plasmons.

Controlling, detecting and generating propagating plasmons by all-electrical means is at the heart of on-chip nano-optical processing. Graphene carries long-lived plasmons that are extremely confined ...

Electrical probing and tuning of molecular physisorption on graphene.

The ability to tune the molecular interaction electronically can have profound impact on wide-ranging scientific frontiers in catalysis, chemical and biological sensor development, and the understandi...

Bending Gold Nanorods with Light.

V-shaped gold nanoantennas are the functional components of plasmonic metasurfaces, which are capable of manipulating light in unprecedented ways. Designing a metasurface requires the custom arrangeme...

Clinical Trials [970 Associated Clinical Trials listed on BioPortfolio]

Motion Analysis of Sit-to-Stand Movements in Children With Spastic Diplegia

The purpose of this study is to compare movement variations before and after the loaded training, with kinematics, kinetics, and electromyography, in children with spastic diplegia and to ...

Paclitaxel-Loaded Polymeric Micelle and Carboplatin as First-Line Therapy in Treating Patients With Advanced Ovarian Cancer

RATIONALE: Drugs used in chemotherapy, such as paclitaxel-loaded polymeric micelle and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or...

A Clinical Trial of Paclitaxel Loaded Polymeric Micelle in Patients With Taxane-Pretreated Recurrent Breast Cancer

The purpose of this study is to evaluate the response rate in patients with taxane-pretreated recurrent breast cancer receiving paclitaxel loaded polymeric micelle (Genexol-PM).

Anti-EGFR-immunoliposomes Loaded With Doxorubicin in Patients With Advanced Triple Negative EGFR Positive Breast Cancer

The main objective of the trial is to determine the efficacy of doxorubicin-loaded anti-EGFR immunoliposomes as first-line therapy in patients with advanced triple Negative, EGFR positive ...

Clinical Evaluation of the Care On Line Thermometer

The purpose of this clinical study is to evaluate the performance of the COL thermometer by comparing its measurement to equilibrium measurement and to make a final tuning of the thermomet...

Medical and Biotech [MESH] Definitions

Apparatus and instruments that generate and operate with ELECTRICITY, and their electrical components.

The electrical response evoked in a muscle or motor nerve by electrical or magnetic stimulation. Common methods of stimulation are by transcranial electrical and TRANSCRANIAL MAGNETIC STIMULATION. It is often used for monitoring during neurosurgery.

Use of a device (film badge) for measuring exposure of individuals to radiation. It is usually made of metal, plastic, or paper and loaded with one or more pieces of x-ray film.

The electrical properties, characteristics of living organisms, and the processes of organisms or their parts that are involved in generating and responding to electrical charges.

Methods to induce and measure electrical activities at specific sites in the heart to diagnose and treat problems with the heart's electrical system.

Quick Search
Advertisement
 


DeepDyve research library

Searches Linking to this Article