Insulin differentially influences brain glucose and lactate in traumatic brain injured patients.

00:25 EDT 2nd September 2015 | BioPortfolio

Summary of "Insulin differentially influences brain glucose and lactate in traumatic brain injured patients."


AIM:
Hypo- and hyperglycemia must be avoided to prevent additional brain damage following traumatic brain injury (TBI). However, the optimal blood glucose range requiring insulin remains unknown. Cerebral microdialysis is helpful in unmasking signs of metabolic impairment, thereby identifying deleterious blood glucose levels.
METHODS:
A retrospective analysis of prospectively collected cerebral microdialysis samples obtained from 20 non-diabetic patients with severe TBI treated at the trauma surgical intensive care unit at the University Hospital Zürich, Switzerland.
RESULTS:
The impact of different arterial blood glucose values and concomitant insulin administration on cerebral interstitial glucose and lactate levels was investigated. In addition, energetic impairment was determined by calculating lactate-to-glucose ratios. Insulin administration was associated with significantly reduced cerebral glucose concentrations and significantly increased lactate-to-glucose ratios with arterial blood glucose levels <5 mM. At arterial blood glucose levels >7 mM, insulin administration was associated with significantly increased interstitial glucose values, significantly decreased lactate concentrations, and markedly diminished lactate-to-glucose ratios.
CONCLUSION:
Insulin exerts differential effects that depend strongly on the underlying arterial blood glucose concentrations. To avoid energetic impairment, insulin should not be administered at arterial blood glucose levels <5 mM. However, at arterial blood glucose levels >7-8 mM, insulin administration appears to be encouraged to increase extracellular glucose concentrations and decrease energetic impairment reflected by reduced interstitial brain lactate and decreased lactate-to-glucose ratios. Nevertheless, frequent analysis is required to minimize the risk of inducing impaired brain metabolism.

Affiliation

Surgical Intensive Care, University Hospital Zürich, Zürich, Switzerland - john.stover@access.unizh.ch.

Journal Details

This article was published in the following journal.

Name: Minerva anestesiologica
ISSN: 1827-1596
Pages:

Links

PubMed Articles [14681 Associated PubMed Articles listed on BioPortfolio]

Neuroenergetic response to prolonged cerebral glucose depletion after severe brain injury and the role of lactate.

Lactate may represent a supplemental fuel for the brain. We examined cerebral lactate metabolism during prolonged brain glucose depletion (GD) in acute brain injury (ABI) patients monitored with cereb...

Lactate: Brain Fuel in Human Traumatic Brain Injury. A Comparison to Normal Healthy Control Subjects.

We evaluated the hypothesis that lactate shuttling helps support nutritive needs of injured brains. To that end we utilized dual isotope tracer [6,6-2H2]glucose, i.e., D2-glucose, and [3-13C]lactate t...

Effects of Bisphenol A on glucose homeostasis and brain insulin signaling pathways in male mice.

The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the pr...

Hyperinsulinemic Hypoglycemia.

In hyperinsulinemic hypoglycemia (HH) there is dysregulation of insulin secretion from pancreatic β-cells. Insulin secretion becomes inappropriate for the level of blood glucose leading to severe hyp...

111 New Observations in Cerebral Glucose Metabolism Following Traumatic Brain Injury: The Mystery of the Missing Glucose 246 Studies in 74 Patients and Comparison to Normal Controls.

Previous studies have demonstrated a profound dysfunction of cerebral metabolism following traumatic brain injury (TBI). Despite overall depression of cerebral metabolism, the cerebral metabolic rate ...

Clinical Trials [6195 Associated Clinical Trials listed on BioPortfolio]

Sodium-Lactate and Traumatic Brain Injury

The purpose of this study is to compare the effect of bolus of either sodium-lactate or mannitol on the evolution of intracranial pressure (ICP) during intracranial hypertensive episodes (...

Multimodal Neurodiagnostic Imaging of Traumatic Brain Injury and Post-Traumatic Stress Disorder

The purpose of this study is to determine whether the brains of persons with and without traumatic brain injury differ in a meaningful way when advanced technology images of the brain are ...

Cases With Traumatic and Non Traumatic Brain Damage Treated in the Intensive Care

Cases of traumatic and nontraumatic brain damage have high rates of morbidity and mortality. In this study of cases being treated in the ICU for a diagnosis of brain damage, it was aimed t...

Safety of Darbepoetin Alfa Treatment in Patients With Severe Traumatic Brain Injury

The purpose of this study is to see if the treatment of severely brain injured patients with darbepoetin (a long acting form of erythropoietin) will be safe, and will reduce brain damage b...

Amantadine and Temporal Discrimination in Patients With Traumatic Brain Injury (TBI)

The study will explore the neurocognitive effect of four weeks of treatment with amantadine versus placebo in patients with traumatic brain injury using the Interval Bisection Timing Task....

Medical and Biotech [MESH] Definitions

Bleeding within the brain as a result of penetrating and nonpenetrating CRANIOCEREBRAL TRAUMA. Traumatically induced hemorrhages may occur in any area of the brain, including the CEREBRUM; BRAIN STEM (see BRAIN STEM HEMORRHAGE, TRAUMATIC); and CEREBELLUM.

A ubiquitously expressed glucose transporter that is important for constitutive, basal GLUCOSE transport. It is predominately expressed in ENDOTHELIAL CELLS and ERYTHROCYTES at the BLOOD-BRAIN BARRIER and is responsible for GLUCOSE entry into the BRAIN.

Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits.

Prolonged unconsciousness from which the individual cannot be aroused, associated with traumatic injuries to the BRAIN. This may be defined as unconsciousness persisting for 6 hours or longer. Coma results from injury to both cerebral hemispheres or the RETICULAR FORMATION of the BRAIN STEM. Contributing mechanisms include DIFFUSE AXONAL INJURY and BRAIN EDEMA. (From J Neurotrauma 1997 Oct;14(10):699-713)

Tissue NECROSIS in any area of the brain, including the CEREBRAL HEMISPHERES, the CEREBELLUM, and the BRAIN STEM. Brain infarction is the result of a cascade of events initiated by inadequate blood flow through the brain that is followed by HYPOXIA and HYPOGLYCEMIA in brain tissue. Damage may be temporary, permanent, selective or pan-necrosis.


Advertisement
 

Relevant Topics

Alzheimer's Disease
Latest News Clinical Trials Research Drugs Reports Corporate
Of all the types of Dementia, Alzheimer's disease is the most common, affecting around 465,000 people in the UK. Neurons in the brain die, becuase  'plaques' and 'tangles' (mis-folded proteins) form in the brain. People with Al...

Anxiety Disorders
Latest News Clinical Trials Research Drugs Reports Corporate
Anxiety is caused by stress. It is a natural reaction, and is beneficial in helping us deal with tense situations and pressure. It is deterimental when is becomes an excessive, irrational dread of everyday situations. The most common types of anxiety di...

Advertisement