Advertisement
Advertise here Publish your press releases here Sponsor BioPortfolio
Follow us on Twitter Sign up for daily news and research emails Contributors wanted

Fetal muscle development, mesenchymal multipotent cell differentiation and associated signaling pathways.

21:22 EDT 30th July 2014 | BioPortfolio

Summary of "Fetal muscle development, mesenchymal multipotent cell differentiation and associated signaling pathways."

Enhancing muscle growth while reducing fat accumulation improves the efficiency of animal production. The fetal stage is crucial for skeletal muscle development. Fetal muscle development involves myogenesis, adipogenesis and fibrogenesis from mesenchymal multipotent cells (MC), which are negatively affected by maternal nutrient deficiencies. Enhancing myogenesis increases the lean to fat ratio of animals, enhancing intramuscular adipogenesis increases intramuscular fat that is indispensible for the superior eating properties of meat because fat is the major contributor to meat flavor. The promotion of fibrogenesis leads to the accumulation of connective tissue, which contributes to the background toughness of meat and is undesirable. Thus, it is essential to regulate MC differentiation in order to enhance lean growth and improve meat quality. To date, our understanding of mechanisms regulating the lineage commitment of MC is limited. In this review, we first discuss the impact of maternal nutrient deficiency on fetal development, offspring body composition and meat quality. Because maternal nutrition affects fetal muscle through altering MC differentiation, we then review several important extracellular morphogens regulating MC differentiation, including hedgehog, Wingless and Int (Wnt) and bone morphogenic proteins. Possible involvement of epigenetic modifications associated with histone deacetylases class IIa and histone acetyltransferase, p300, in MC differentiation is also discussed.

Affiliation

Developmental Biology Group, Department of Animal Science, University of Wyoming, Laramie 82071.

Journal Details

This article was published in the following journal.

Name: Journal of animal science
ISSN: 1525-3163
Pages:

Links

PubMed Articles [30354 Associated PubMed Articles listed on BioPortfolio]

Cell isolation induces fate changes of bone marrow mesenchymal cells leading to loss or alternatively to acquisition of new differentiation potentials.

Mesenchymal stromal cell (MSC) populations include a fraction, termed mesenchymal stem cells, exhibiting multipotency. Other cells within this population possess a lesser differentiation range. This w...

Endothelial cells direct mesenchymal stem cells toward a smooth muscle cell fate.

Under defined conditions mesenchymal stem cells can differentiate into unique cell types, making them attractive candidates for cell-based disease therapies. Ischemic diseases would greatly benefit fr...

Yolk Sac Mesenchymal Progenitor Cells from New World Mice (Necromys lasiurus) with Multipotent Differential Potential.

Fetal membranes are abundant, ethically acceptable and readily accessible sources of stem cells. In particular, the yolk sac is a source of cell lineages that do not express MHCs and are mainly free f...

The Effect of miR-210 Up-regulation on Proliferation and Survival of Mouse Bone Marrow Derived Mesenchymal Stem Cell.

Bone marrow derived mesenchymal stem cells (MSCs) are a population of multipotent progenitors which have the capacity of proliferation and differentiation into mesenchymal lineage cells. Hypoxia could...

Cadherin-11 regulates mesenchymal stem cell differentiation into smooth muscle cells and development of contractile function in vivo.

Although soluble factors (e.g. Transform Growth Factor beta 1 (TGF-β1)) induced mesenchymal stem cell (MSC) differentiation toward smooth muscle (SMC) lineage, the role of adherent junctions in this...

Clinical Trials [5151 Associated Clinical Trials listed on BioPortfolio]

Using Mesenchymal Stem Cells to Fill Bone Void Defects in Patients With Benign Bone Lesions

The purpose of this study is to determine whether using mesenchymal stem cells will heal benign bone lesion defects faster than demineralized bone matrix

Autologous Mesenchymal Stromal Cell Therapy in Heart Failure

It is a single centre, randomised controlled study of the effect of NOGA-guided direct intramyocardial injection of mesenchymal stromal cells on the development of new myocardium and blood...

Cotransplantation of Islet and Mesenchymal Stem Cell in Type 1 Diabetic Patients

The study evaluates the safety and efficacy of Cotransplantation of Islet and Mesenchymal Stem Cell in Type 1 Diabetic Patients. The researchers hypothesize that additional Mesenchymal Ste...

Mesenchymal Stem Cell in Patients With Acute Severe Respiratory Failure

Although the advent of advanced medical support for respiratory failure, the mortality rate of acute severe respiratory failure is still high and the life quality is frequently compromised...

Development of a Fetal Sex Assay From Maternal Whole Blood

Whole blood from pregnant women will be collected to develop a noninvasive fetal sex test.

Medical and Biotech [MESH] Definitions

Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage.

A complication of pregnancy in which the UMBILICAL CORD wraps around the fetal neck once or multiple times. In some cases, cord entanglement around fetal neck may not affect pregnancy outcome significantly. In others, the nuchal cord may lead to restricted fetal blood flow, oxygen transport, fetal development, fetal movement, and complicated delivery at birth.

A growth differentiation factor that plays a regulatory role as a paracrine factor for a diverse array of cell types during EMBRYONIC DEVELOPMENT and in the adult tissues. Growth differentiation factor 2 is also a potent regulator of CHONDROGENESIS and was previously referred to as bone morphogenetic protein 9.

A bone morphogenetic protein that is a potent inducer of BONE formation. It plays additional roles in regulating CELL DIFFERENTIATION of non-osteoblastic cell types and epithelial-mesenchymal interactions.

Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation.

Search BioPortfolio: