Fetal muscle development, mesenchymal multipotent cell differentiation and associated signaling pathways.

16:34 EDT 30th May 2015 | BioPortfolio

Summary of "Fetal muscle development, mesenchymal multipotent cell differentiation and associated signaling pathways."

Enhancing muscle growth while reducing fat accumulation improves the efficiency of animal production. The fetal stage is crucial for skeletal muscle development. Fetal muscle development involves myogenesis, adipogenesis and fibrogenesis from mesenchymal multipotent cells (MC), which are negatively affected by maternal nutrient deficiencies. Enhancing myogenesis increases the lean to fat ratio of animals, enhancing intramuscular adipogenesis increases intramuscular fat that is indispensible for the superior eating properties of meat because fat is the major contributor to meat flavor. The promotion of fibrogenesis leads to the accumulation of connective tissue, which contributes to the background toughness of meat and is undesirable. Thus, it is essential to regulate MC differentiation in order to enhance lean growth and improve meat quality. To date, our understanding of mechanisms regulating the lineage commitment of MC is limited. In this review, we first discuss the impact of maternal nutrient deficiency on fetal development, offspring body composition and meat quality. Because maternal nutrition affects fetal muscle through altering MC differentiation, we then review several important extracellular morphogens regulating MC differentiation, including hedgehog, Wingless and Int (Wnt) and bone morphogenic proteins. Possible involvement of epigenetic modifications associated with histone deacetylases class IIa and histone acetyltransferase, p300, in MC differentiation is also discussed.


Developmental Biology Group, Department of Animal Science, University of Wyoming, Laramie 82071.

Journal Details

This article was published in the following journal.

Name: Journal of animal science
ISSN: 1525-3163


PubMed Articles [30224 Associated PubMed Articles listed on BioPortfolio]

Identification and isolation of putative stem cells from the murine placenta.

Abstract Objective: The placenta of mid-gestation mice is a known rich source of hematopoietic stem cells. We hypothesized that it is also a source of other multipotent stem cells. Methods: We isolate...

Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold.

The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following inductio...

The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation.

Previous studies have shown that miR-203 is a skin-specific microRNA (miRNA) with a profound role in skin cell differentiation. However, emerging microarray and deep sequencing data revealed that miR-...

Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds.

The association between tridimensional scaffolds to cells of interest has provided excellent perspectives for obtaining viable complex tissues in vitro, such as skin, resulting in impressive advances...

Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools.

Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitu...

Clinical Trials [5842 Associated Clinical Trials listed on BioPortfolio]

Stem Cell Therapy for Treatment of Female Stress Urinary Incontinence

This study evaluates the effectiveness of mesenchymal stem cells in treatment of stress urinary incontinence due to intrinsic sphincter deficiency; in which the problem is weakness or dama...

Intravenous Administration of Allogeneic Bone Marrow Derived Multipotent Mesenchymal Stromal Cells (MSCs) in Patients With Recent Onset Anthracycline-Associated Cardiomyopathy

The goal of this clinical research study is to learn if adding mesenchymal stem cells (MSCs) to standard of care drugs can help control heart failure that may have been caused by anthracyc...

Using Mesenchymal Stem Cells to Fill Bone Void Defects in Patients With Benign Bone Lesions

The purpose of this study is to determine whether using mesenchymal stem cells will heal benign bone lesion defects faster than demineralized bone matrix

Autologous Mesenchymal Stromal Cell Therapy in Heart Failure

It is a single centre, randomised controlled study of the effect of NOGA-guided direct intramyocardial injection of mesenchymal stromal cells on the development of new myocardium and blood...

Cotransplantation of Islet and Mesenchymal Stem Cell in Type 1 Diabetic Patients

The study evaluates the safety and efficacy of Cotransplantation of Islet and Mesenchymal Stem Cell in Type 1 Diabetic Patients. The researchers hypothesize that additional Mesenchymal Ste...

Medical and Biotech [MESH] Definitions

Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage.

A complication of pregnancy in which the UMBILICAL CORD wraps around the fetal neck once or multiple times. In some cases, cord entanglement around fetal neck may not affect pregnancy outcome significantly. In others, the nuchal cord may lead to restricted fetal blood flow, oxygen transport, fetal development, fetal movement, and complicated delivery at birth.

A growth differentiation factor that plays a regulatory role as a paracrine factor for a diverse array of cell types during EMBRYONIC DEVELOPMENT and in the adult tissues. Growth differentiation factor 2 is also a potent regulator of CHONDROGENESIS and was previously referred to as bone morphogenetic protein 9.

A bone morphogenetic protein that is a potent inducer of BONE formation. It plays additional roles in regulating CELL DIFFERENTIATION of non-osteoblastic cell types and epithelial-mesenchymal interactions.

Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation.

Search BioPortfolio:

Relevant Topic

Latest News Clinical Trials Research Drugs Reports Corporate
Rheumatology is the medical specialty concerned with the diagnosis and management of disease involving joints, tendons, muscles, ligaments and associated structures (Oxford Medical Dictionary). It is an active area of medical research, because of the d...