High-speed scanning thermal lithography for nanostructuring of electronic devices.

08:00 EDT 17th April 2014 | BioPortfolio

Summary of "High-speed scanning thermal lithography for nanostructuring of electronic devices."

We report a detailed analysis on the use of simultaneous substrate heating in conjunction with scanning thermal lithography (SThL) to dramatically increase the patterning speed of conventional SThL systems. The investigation consists of finite element simulations as well as practical assessments of the speed at which different organic precursors are thermally converted to produce standalone electrically active and passive nanostructures. As a proof of concept the high-speed SThL method was used to pattern semiconducting pentacene nanoribbons, which were subsequently incorporated into functioning transistors. Simultaneous substrate heating was found to allow patterning of functional devices at writing speeds >19 times higher than transistors produced at identical speeds but with the substrate maintained at room temperature. These fast written transistors exhibit 100× higher hole mobility with high on/off current ratio and negligible operating hysteresis. The generality of the proposed high-speed SThL method was further demonstrated with the rapid patterning of conductive nanostructured metal electrodes with excellent spatial resolution employing an appropriate polymer precursor as the chemical resist. It is proposed that these advances further support the case for using SThL systems as rapid prototypers for low micron and nanoscale structures for both direct patterning of precursors and indirect patterning of metals and other materials using suitable chemical resist.


Journal Details

This article was published in the following journal.

Name: Nanoscale
ISSN: 2040-3372


DeepDyve research library

PubMed Articles [22588 Associated PubMed Articles listed on BioPortfolio]

Advanced oxidation scanning probe lithography.

Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (...

Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultra-Low Thermal Resistances.

As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better t...

Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper towards High Thermal Conductivity.

Polymer composites with high thermal conductivity have attracted much attention, along with the rapid development of electronic devices toward higher speed and better performance. However, high interf...

16 nm-resolution lithography using ultra-small-gap bowtie apertures.

Photolithography has long been a critical technology for nanoscale manufacturing, especially in the semiconductor industry. However, the diffractive nature of light has limited the continuous advance ...

A zero-thermal-quenching phosphor.

Phosphor-converted white light-emitting diodes (pc-WLEDs) are efficient light sources used in lighting, high-tech displays, and electronic devices. One of the most significant challenges of pc-WLEDs i...

Clinical Trials [4180 Associated Clinical Trials listed on BioPortfolio]

Beyond Performance Status: Electronic Activity Monitoring to Assess Functional Activity of Patients With Gastrointestinal Malignancy During Chemotherapy.

Electronic activity monitoring (EAM) devices are wearable electronic devices that monitor functional activity and provide personal feedback on activity progression. This study aims to dete...

Electronic Monitoring of Medication Adherence in Moderate to Severe Asthma Patients

This study will evaluate the role of using electronic sensors for asthma inhaler devices in monitoring medication adherence and asthma control

Clinical Pharmacology of Electronic Cigarettes

The purpose of this study is to learn more about nicotine exposure and the safety of electronic cigarettes (EC). It will focus on the areas that are thought to most closely relate to the a...

Impact of Speed Of Rewarming After CaRdiac Arrest and ThErapeutic Hypothermia

Comparing the production of interleukin 6 (inflammatory cytokine) in two heating speed (slow rewarming rate: 0.25 ° C / h or fast rewarming rate 0.50 ° C / h) at the completion of a peri...

Patient Registry Of Magnetic Resonance Imaging in Non-Approved DEvices

The investigators are providing MRI in patients with non-MRI approved CIED's (Cardiac Implanted Electronic Devices)

Medical and Biotech [MESH] Definitions

Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample.

Electronic devices that increase the magnitude of a signal's power level or current.

Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.

Discarded electronic devices containing valuable and sometimes hazardous materials such as LEAD, NICKEL, CADMIUM, and MERCURY. (from accessed 4/25/2010)

Electrical devices that are composed of semiconductor material, with at least three connections to an external electronic circuit. They are used to amplify electrical signals, detect signals, or as switches.

Quick Search

DeepDyve research library

Searches Linking to this Article