High-speed scanning thermal lithography for nanostructuring of electronic devices.

08:00 EDT 17th April 2014 | BioPortfolio

Summary of "High-speed scanning thermal lithography for nanostructuring of electronic devices."

We report a detailed analysis on the use of simultaneous substrate heating in conjunction with scanning thermal lithography (SThL) to dramatically increase the patterning speed of conventional SThL systems. The investigation consists of finite element simulations as well as practical assessments of the speed at which different organic precursors are thermally converted to produce standalone electrically active and passive nanostructures. As a proof of concept the high-speed SThL method was used to pattern semiconducting pentacene nanoribbons, which were subsequently incorporated into functioning transistors. Simultaneous substrate heating was found to allow patterning of functional devices at writing speeds >19 times higher than transistors produced at identical speeds but with the substrate maintained at room temperature. These fast written transistors exhibit 100× higher hole mobility with high on/off current ratio and negligible operating hysteresis. The generality of the proposed high-speed SThL method was further demonstrated with the rapid patterning of conductive nanostructured metal electrodes with excellent spatial resolution employing an appropriate polymer precursor as the chemical resist. It is proposed that these advances further support the case for using SThL systems as rapid prototypers for low micron and nanoscale structures for both direct patterning of precursors and indirect patterning of metals and other materials using suitable chemical resist.


Journal Details

This article was published in the following journal.

Name: Nanoscale
ISSN: 2040-3372


DeepDyve research library

PubMed Articles [21775 Associated PubMed Articles listed on BioPortfolio]

Controlling the temperature and speed of the phase transition of VO2 microcrystals.

We investigated the control of two important parameters of vanadium dioxide (VO2) microcrystals, the phase transition temperature and speed by varying microcrystal width. By using the reflectivity cha...

Towards an Accurate Measurement of Thermal Contact Resistance at Chemical Vapor Deposition-Grown Graphene/SiO2 Interface Through Null Point Scanning Thermal Microscopy.

In the development of graphene-based electronic devices, it is crucial to characterize the thermal contact resistance between the graphene and the substrate precisely. In this study, we demonstrate th...

High-Speed Electrochemical Imaging.

The design, development and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 p...

Laser sintering of copper nanoparticles on top of silicon substrates.

This study examines the sintering of inkjet printed nanoparticle copper ink in a room environment using a laser as a high speed sintering method. Printed patterns were sintered with increasing laser s...

Applying the miniaturization technologies for biosensor design.

Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single subst...

Clinical Trials [3283 Associated Clinical Trials listed on BioPortfolio]

Clinical Pharmacology of Electronic Cigarettes

The purpose of this study is to learn more about nicotine exposure and the safety of electronic cigarettes (EC). It will focus on the areas that are thought to most closely relate to the a...

Impact of Speed Of Rewarming After CaRdiac Arrest and ThErapeutic Hypothermia

Comparing the production of interleukin 6 (inflammatory cytokine) in two heating speed (slow rewarming rate: 0.25 ° C / h or fast rewarming rate 0.50 ° C / h) at the completion of a peri...

Evaluation of the Efficiency of Word Prediction Software to Text Input Speed for Tetraplegia

Computers now play an important role in the lives of most individuals.Access to computers is crucial for people with disabilities and may improve their quality of life. The use of computer...

Thermal Imaging in Neonates: A Feasibility Study in Healthy Babies and Babies With Suspected TTN

This is a study to evaluate thermal imaging as a technology to monitor the normal clearing of amniotic fluid from healthy newborns and newborns suspected of having a condition called trans...

Using Health Information Technology (HIT) to Improve Ambulatory Chronic Disease Care: Smart Device Substudy

In-home health monitoring devices have the potential to increase the speed and ease of modifying treatment for ambulatory patients living with chronic conditions. This study examines the i...

Medical and Biotech [MESH] Definitions

Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample.

Electronic devices that increase the magnitude of a signal's power level or current.

Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.

Discarded electronic devices containing valuable and sometimes hazardous materials such as LEAD, NICKEL, CADMIUM, and MERCURY. (from accessed 4/25/2010)

Electrical devices that are composed of semiconductor material, with at least three connections to an external electronic circuit. They are used to amplify electrical signals, detect signals, or as switches.

Quick Search

DeepDyve research library

Searches Linking to this Article