Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting.

06:00 EDT 17th June 2010 | BioPortfolio

Summary of "Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting."

The potential for bias due to misclassification error in regression analysis is well understood by statisticians and epidemiologists. Assuming little or no available data for estimating misclassification probabilities, investigators sometimes seek to gauge the sensitivity of an estimated effect to variations in the assumed values of those probabilities. We present an intuitive and flexible approach to such a sensitivity analysis, assuming an underlying logistic regression model. For outcome misclassification, we argue that a likelihood-based analysis is the cleanest and the most preferable approach. In the case of covariate misclassification, we combine observed data on the outcome, error-prone binary covariate of interest, and other covariates measured without error, together with investigator-supplied values for sensitivity and specificity parameters, to produce corresponding positive and negative predictive values. These values serve as estimated weights to be used in fitting the model of interest to an appropriately defined expanded data set using standard statistical software. Jackknifing provides a convenient tool for incorporating uncertainty in the estimated weights into valid standard errors to accompany log odds ratio estimates obtained from the sensitivity analysis. Examples illustrate the flexibility of this unified strategy, and simulations suggest that it performs well relative to a maximum likelihood approach carried out via numerical optimization.


Department of Biostatistics and Bioinformatics, The Rollins School of Public Health of Emory University, 1518 Clifton Rd. N.E., Atlanta, GA 30322, USA.

Journal Details

This article was published in the following journal.

Name: Statistics in medicine
ISSN: 1097-0258
Pages: 2297-309


DeepDyve research library

PubMed Articles [31076 Associated PubMed Articles listed on BioPortfolio]

Univariate and bivariate likelihood-based meta-analysis methods performed comparably when marginal sensitivity and specificity were the targets of inference.

To compare statistical methods for meta-analysis of sensitivity and specificity of medical tests (e.g., diagnostic or screening tests).

Improved Correction of Misclassification Bias With Bootstrap Imputation.

Diagnostic codes used in administrative database research can create bias due to misclassification. Quantitative bias analysis (QBA) can correct for this bias, requires only code sensitivity and speci...

Sample size calculation to externally validate scoring systems based on logistic regression models.

A sample size containing at least 100 events and 100 non-events has been suggested to validate a predictive model, regardless of the model being validated and that certain factors can influence calibr...

Simultaneous Ability and Difficulty Estimation Via the Linear Discriminant Function.

In this paper, parameter estimation of the dichotomous Rasch model (Rasch, 1960) using the linear discriminant function (Fisher, 1936) is presented. This is accomplished by considering the scored item...

Evaluation and comparison of statistical methods for early temporal detection of outbreaks: A simulation-based study.

The objective of this paper is to evaluate a panel of statistical algorithms for temporal outbreak detection. Based on a large dataset of simulated weekly surveillance time series, we performed a syst...

Clinical Trials [5224 Associated Clinical Trials listed on BioPortfolio]

Vocal Acoustic Biomarkers in Depression

This Phase II SBIR study will replicate pilot study methods establishing computer-automated methods for assessing depression severity using interactive voice response system technology and...

Predictive Models for Betalactam Allergy

Background: ß-lactam (BL) antibiotics represent the main cause of allergic reactions to drugs, inducing both immediate and non-immediate reactions. The diagnosis is well established, usua...

Management of Postpartum Haemorrhage and Effect of Geographic Region: A Secondary Analysis of the World Maternal Antifibrinolytic (WOMAN) Trial

Background: Maternal deaths occur universally and are largely avoidable. Postpartum haemorrhage accounts for a disproportionate amount of maternal deaths. There remains a great need to exp...

Prospective Validation and Comparison of Different Ultrasound Methods for Discrimination Between Benign and Malignant Ovarian/Tubal Masses Prior to Surgery

The ability of different methods to discriminate between benign and malignant adnexal masses has been compared in a meta-analysis showing that the IOTA Simple Rules and the IOTA logistic r...

Early Improvement in Individual Symptoms and Response to Antidepressants in Patients With Major Depressive Disorder

Major depressive disorder (MDD) affects around 7% of the population yearly. Although effective treatments are available, only around half of all patients participating in clinical trials r...

Medical and Biotech [MESH] Definitions

Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable.

In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.

Methods used to take into account and incorporate spatial autocorrelation and regional variation into regression analysis models of data that has spatial dependency, and also to provide information on the spatial relationships among the variables.

A statistical analytic technique used with discrete dependent variables, concerned with separating sets of observed values and allocating new values. It is sometimes used instead of regression analysis.

Methods for performing three-dimensional measurement and motion analysis using stereoscopic radiographs.

Quick Search

DeepDyve research library

Relevant Topic

Public Health
Alternative Medicine Cleft Palate Complementary & Alternative Medicine Congenital Diseases Dentistry Ear Nose & Throat Food Safety Geriatrics Healthcare Hearing Medical Devices MRSA Muscular Dyst...

Searches Linking to this Article