Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting.

14:58 EDT 29th August 2015 | BioPortfolio

Summary of "Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting."

The potential for bias due to misclassification error in regression analysis is well understood by statisticians and epidemiologists. Assuming little or no available data for estimating misclassification probabilities, investigators sometimes seek to gauge the sensitivity of an estimated effect to variations in the assumed values of those probabilities. We present an intuitive and flexible approach to such a sensitivity analysis, assuming an underlying logistic regression model. For outcome misclassification, we argue that a likelihood-based analysis is the cleanest and the most preferable approach. In the case of covariate misclassification, we combine observed data on the outcome, error-prone binary covariate of interest, and other covariates measured without error, together with investigator-supplied values for sensitivity and specificity parameters, to produce corresponding positive and negative predictive values. These values serve as estimated weights to be used in fitting the model of interest to an appropriately defined expanded data set using standard statistical software. Jackknifing provides a convenient tool for incorporating uncertainty in the estimated weights into valid standard errors to accompany log odds ratio estimates obtained from the sensitivity analysis. Examples illustrate the flexibility of this unified strategy, and simulations suggest that it performs well relative to a maximum likelihood approach carried out via numerical optimization.

Affiliation

Department of Biostatistics and Bioinformatics, The Rollins School of Public Health of Emory University, 1518 Clifton Rd. N.E., Atlanta, GA 30322, USA. rlyles@sph.emory.edu

Journal Details

This article was published in the following journal.

Name: Statistics in medicine
ISSN: 1097-0258
Pages: 2297-309

Links

PubMed Articles [28397 Associated PubMed Articles listed on BioPortfolio]

Robust Bayesian Sensitivity Analysis for Case-Control Studies with Uncertain Exposure Misclassification Probabilities.

Abstract Exposure misclassification in case-control studies leads to bias in odds ratio estimates. There has been considerable interest recently to account for misclassification in estimation so as to...

Regression tree for choledocholithiasis prediction.

The aim of this study was to develop and compare the predictive accuracy of classification and regression tree (CART) analysis with logistic regression (LR) for predicting common bile duct stones (CBD...

Predictive Value of Interim PET/CT in DLBCL Treated with R-CHOP: Meta-Analysis.

Objective. We conducted a meta-analysis to evaluate the predictive value of interim (18)F-FDG PET/CT in patients with DLBCL treated with R-CHOP chemotherapy. Methods. We searched for articles publishe...

Analysis of the Discriminative Methods for Diagnosis of Benign and Malignant Solitary Pulmonary Nodules Based on Serum Markers.

Background: Screening indexes of tumor serum markers for benign and malignant solitary pulmonary nodules (SPNs) were analyzed to find the optimum method for diagnosis. Methods: Enzyme-linked immunosor...

Predicting Long-Term Outcome After Traumatic Brain Injury Using Repeated Measurements of Glasgow Coma Scale and Data Mining Methods.

Previous studies have identified some clinical parameters for predicting long-term functional recovery and mortality after traumatic brain injury (TBI). Here, data mining methods were combined with se...

Clinical Trials [3327 Associated Clinical Trials listed on BioPortfolio]

Vocal Acoustic Biomarkers in Depression

This Phase II SBIR study will replicate pilot study methods establishing computer-automated methods for assessing depression severity using interactive voice response system technology and...

Predictive Biomarkers of Response to Sunitinib in the Treatment of Poorly-differentiated NEURO-Endocrine Tumors

The purpose of this study is to identify predictive molecular markers of response to continuous daily sunitinib at dose of 37.5 mg used in patients with poorly-differentiated Advanced/Inop...

Preoperative Biochemical Predictors of Outcome in Patients With Hip Fracture

The objective of the study is to identify biochemical predictors of morbidity and mortality in patients suffering from hip fracture. For this purpose blood samples are collected prehospita...

Surveillance of Hospitalizations Due to Rotavirus Infections Among Children From Israel

Objectives 1. To determine the burden and characteristics of rotavirus-associated hospitalizations among children under five years of age of northern Israel 2. To identify...

Model-Free Time Curves for Longitudinal Data Analysis

To enhance statistical methods for epidemiological studies by extending the Disturbed Highest Derivative Polynomial (DHDP) to models for binary-logistic and Poisson data and by including r...

Medical and Biotech [MESH] Definitions

Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable.

In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.

A statistical analytic technique used with discrete dependent variables, concerned with separating sets of observed values and allocating new values. It is sometimes used instead of regression analysis.

Techniques of nucleotide sequence analysis that increase the range, complexity, sensitivity, and accuracy of results by greatly increasing the scale of operations and thus the number of nucleotides, and the number of copies of each nucleotide sequenced. The sequencing may be done by analysis of the synthesis or ligation products, hybridization to preexisting sequences, etc.

The statistical manipulation of hierarchically and non-hierarchically nested data. It includes clustered data, such as a sample of subjects within a group of schools. Prevalent in the social, behavioral sciences, and biomedical sciences, both linear and nonlinear regression models are applied.


Advertisement
 

Relevant Topic

Public Health
Latest News Clinical Trials Research Drugs Reports Corporate
Alternative Medicine Cleft Palate Complementary & Alternative Medicine Congenital Diseases Dentistry Ear Nose & Throat Food Safety Geriatrics Healthcare Hearing Medical Devices MRSA Muscular Dyst...

Advertisement
 

Searches Linking to this Article