Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting.

06:00 EDT 17th June 2010 | BioPortfolio

Summary of "Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting."

The potential for bias due to misclassification error in regression analysis is well understood by statisticians and epidemiologists. Assuming little or no available data for estimating misclassification probabilities, investigators sometimes seek to gauge the sensitivity of an estimated effect to variations in the assumed values of those probabilities. We present an intuitive and flexible approach to such a sensitivity analysis, assuming an underlying logistic regression model. For outcome misclassification, we argue that a likelihood-based analysis is the cleanest and the most preferable approach. In the case of covariate misclassification, we combine observed data on the outcome, error-prone binary covariate of interest, and other covariates measured without error, together with investigator-supplied values for sensitivity and specificity parameters, to produce corresponding positive and negative predictive values. These values serve as estimated weights to be used in fitting the model of interest to an appropriately defined expanded data set using standard statistical software. Jackknifing provides a convenient tool for incorporating uncertainty in the estimated weights into valid standard errors to accompany log odds ratio estimates obtained from the sensitivity analysis. Examples illustrate the flexibility of this unified strategy, and simulations suggest that it performs well relative to a maximum likelihood approach carried out via numerical optimization.


Department of Biostatistics and Bioinformatics, The Rollins School of Public Health of Emory University, 1518 Clifton Rd. N.E., Atlanta, GA 30322, USA.

Journal Details

This article was published in the following journal.

Name: Statistics in medicine
ISSN: 1097-0258
Pages: 2297-309


DeepDyve research library

PubMed Articles [29716 Associated PubMed Articles listed on BioPortfolio]

Univariate and bivariate likelihood-based meta-analysis methods performed comparably when marginal sensitivity and specificity were the targets of inference.

To compare statistical methods for meta-analysis of sensitivity and specificity of medical tests (e.g., diagnostic or screening tests).

Robust logistic regression to narrow down the winner's curse for rare and recessive susceptibility variants.

Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is thei...

Robust Methods for Moderation Analysis with a Two-Level Regression Model.

Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assu...

Simultaneous Ability and Difficulty Estimation Via the Linear Discriminant Function.

In this paper, parameter estimation of the dichotomous Rasch model (Rasch, 1960) using the linear discriminant function (Fisher, 1936) is presented. This is accomplished by considering the scored item...

Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L1/2 +2 Regularization.

Cancer classification and feature (gene) selection plays an important role in knowledge discovery in genomic data. Although logistic regression is one of the most popular classification methods, it do...

Clinical Trials [4669 Associated Clinical Trials listed on BioPortfolio]

Vocal Acoustic Biomarkers in Depression

This Phase II SBIR study will replicate pilot study methods establishing computer-automated methods for assessing depression severity using interactive voice response system technology and...

Prospective Validation and Comparison of Different Ultrasound Methods for Discrimination Between Benign and Malignant Ovarian/Tubal Masses Prior to Surgery

The ability of different methods to discriminate between benign and malignant adnexal masses has been compared in a meta-analysis showing that the IOTA Simple Rules and the IOTA logistic r...

Application of GeneXpert on Bronchoscopic Samples for Patients Suspicious of TB

This is an observational study using Bronchial-alveolar lavage (BAL) as specimen for GeneXpert, a real time polymerase chain reaction (PCR) test for detection of tuberculosis (TB). Patient...

Early Improvement in Individual Symptoms and Response to Antidepressants in Patients With Major Depressive Disorder

Major depressive disorder (MDD) affects around 7% of the population yearly. Although effective treatments are available, only around half of all patients participating in clinical trials r...

Discrepancies Between Patients and Physicians in Their Perceptions of Rheumatoid Arthritis Disease Activity

Patients and physicians often differ in their perceptions of rheumatoid arthritis (RA) disease activity, as quantified by the patient's global assessment (PGA) and by the evaluator's globa...

Medical and Biotech [MESH] Definitions

Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable.

In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.

A statistical analytic technique used with discrete dependent variables, concerned with separating sets of observed values and allocating new values. It is sometimes used instead of regression analysis.

Techniques of nucleotide sequence analysis that increase the range, complexity, sensitivity, and accuracy of results by greatly increasing the scale of operations and thus the number of nucleotides, and the number of copies of each nucleotide sequenced. The sequencing may be done by analysis of the synthesis or ligation products, hybridization to preexisting sequences, etc.

The statistical manipulation of hierarchically and non-hierarchically nested data. It includes clustered data, such as a sample of subjects within a group of schools. Prevalent in the social, behavioral sciences, and biomedical sciences, both linear and nonlinear regression models are applied.

Quick Search

DeepDyve research library

Relevant Topic

Public Health
Alternative Medicine Cleft Palate Complementary & Alternative Medicine Congenital Diseases Dentistry Ear Nose & Throat Food Safety Geriatrics Healthcare Hearing Medical Devices MRSA Muscular Dyst...

Searches Linking to this Article