Advertisement

Topics

Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting.

06:00 EDT 17th June 2010 | BioPortfolio

Summary of "Sensitivity analysis for misclassification in logistic regression via likelihood methods and predictive value weighting."

The potential for bias due to misclassification error in regression analysis is well understood by statisticians and epidemiologists. Assuming little or no available data for estimating misclassification probabilities, investigators sometimes seek to gauge the sensitivity of an estimated effect to variations in the assumed values of those probabilities. We present an intuitive and flexible approach to such a sensitivity analysis, assuming an underlying logistic regression model. For outcome misclassification, we argue that a likelihood-based analysis is the cleanest and the most preferable approach. In the case of covariate misclassification, we combine observed data on the outcome, error-prone binary covariate of interest, and other covariates measured without error, together with investigator-supplied values for sensitivity and specificity parameters, to produce corresponding positive and negative predictive values. These values serve as estimated weights to be used in fitting the model of interest to an appropriately defined expanded data set using standard statistical software. Jackknifing provides a convenient tool for incorporating uncertainty in the estimated weights into valid standard errors to accompany log odds ratio estimates obtained from the sensitivity analysis. Examples illustrate the flexibility of this unified strategy, and simulations suggest that it performs well relative to a maximum likelihood approach carried out via numerical optimization.

Affiliation

Department of Biostatistics and Bioinformatics, The Rollins School of Public Health of Emory University, 1518 Clifton Rd. N.E., Atlanta, GA 30322, USA. rlyles@sph.emory.edu

Journal Details

This article was published in the following journal.

Name: Statistics in medicine
ISSN: 1097-0258
Pages: 2297-309

Links

DeepDyve research library

PubMed Articles [29283 Associated PubMed Articles listed on BioPortfolio]

Estimating a Logistic Discrimination Functions When One of the Training Samples Is Subject to Misclassification: A Maximum Likelihood Approach.

The problem of discrimination and classification is central to much of epidemiology. Here we consider the estimation of a logistic regression/discrimination function from training samples, when one of...

Metabolites in Blood for Prediction of Bacteremic Sepsis in the Emergency Room.

A metabolomics approach for prediction of bacteremic sepsis in patients in the emergency room (ER) was investigated. In a prospective study, whole blood samples from 65 patients with bacteremic sepsis...

Predictive factors on the efficacy and risk/intensity of tooth sensitivity of dental bleaching: A multi regression and logistic analysis.

The aim of this study was to identify predictor factors associated with the whitening outcome and risk and intensity of bleaching-induced tooth sensitivity from pooled data of 11 clinical trials of de...

Use of Clinical Data to Predict Appendicitis in Patients with Equivocal US Findings.

Purpose To determine the incremental value of clinical data in patients with ultrasonographic (US) examinations that were interpreted as being equivocal for acute appendicitis. Materials and Methods I...

Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L1/2 +2 Regularization.

Cancer classification and feature (gene) selection plays an important role in knowledge discovery in genomic data. Although logistic regression is one of the most popular classification methods, it do...

Clinical Trials [3985 Associated Clinical Trials listed on BioPortfolio]

Vocal Acoustic Biomarkers in Depression

This Phase II SBIR study will replicate pilot study methods establishing computer-automated methods for assessing depression severity using interactive voice response system technology and...

Application of GeneXpert on Bronchoscopic Samples in the Clinical Management of Patients Suspicious of TB

This is a case control observational study using Bronchial-alveolar lavage (BAL) as specimen for GeneXpert, a real time polymerase chain reaction (PCR) test for detection of tuberculosis (...

Preoperative Biochemical Predictors of Outcome in Patients With Hip Fracture

The objective of the study is to identify biochemical predictors of morbidity and mortality in patients suffering from hip fracture. For this purpose blood samples are collected prehospita...

Predictive Biomarkers of Response to Sunitinib in the Treatment of Poorly-differentiated NEURO-Endocrine Tumors

The purpose of this study is to identify predictive molecular markers of response to continuous daily sunitinib at dose of 37.5 mg used in patients with poorly-differentiated Advanced/Inop...

Surveillance of Hospitalizations Due to Rotavirus Infections Among Children From Israel

Objectives 1. To determine the burden and characteristics of rotavirus-associated hospitalizations among children under five years of age of northern Israel 2. To identify...

Medical and Biotech [MESH] Definitions

Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable.

In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.

A statistical analytic technique used with discrete dependent variables, concerned with separating sets of observed values and allocating new values. It is sometimes used instead of regression analysis.

Techniques of nucleotide sequence analysis that increase the range, complexity, sensitivity, and accuracy of results by greatly increasing the scale of operations and thus the number of nucleotides, and the number of copies of each nucleotide sequenced. The sequencing may be done by analysis of the synthesis or ligation products, hybridization to preexisting sequences, etc.

The statistical manipulation of hierarchically and non-hierarchically nested data. It includes clustered data, such as a sample of subjects within a group of schools. Prevalent in the social, behavioral sciences, and biomedical sciences, both linear and nonlinear regression models are applied.

Quick Search
Advertisement
 


DeepDyve research library

Relevant Topic

Public Health
Alternative Medicine Cleft Palate Complementary & Alternative Medicine Congenital Diseases Dentistry Ear Nose & Throat Food Safety Geriatrics Healthcare Hearing Medical Devices MRSA Muscular Dyst...


Searches Linking to this Article