Advertisement

Topics

PubMed Journal Database | Advanced materials (Deerfield Beach, Fla.) RSS

22:03 EDT 25th April 2017 | BioPortfolio

The US National Library of Medicine and National Institutes of Health manage PubMed.gov which comprises of more than 21 million records, papers, reports for biomedical literature, including MEDLINE, life science and medical journals, articles, reviews, reports and  books.  BioPortfolio aims to publish relevant information on published papers, clinical trials and news associated with users selected topics.

For example view all recent relevant publications on Epigenetics and associated publications and clincial trials.

Showing PubMed Articles 1–25 of 3,700+ from Advanced materials (Deerfield Beach, Fla.)

Cyclodextrin Films with Fast Solvent Transport and Shape-Selective Permeability.

This study describes the molecular-level design of a new type of filtration membrane made of crosslinked cyclodextrins-inexpensive macrocycles of glucose, shaped like hollow truncated cones. The channel-like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer that can effectively discriminate between molecules. The transport of molecules through these membranes is highly shape-sensitive. In addition, the presence of hydrophobic (cavity) and hydrophilic (ester-crosslink...

One-Step Solution Phase Growth of Transition Metal Dichalcogenide Thin Films Directly on Solid Substrates.

Ultrathin transition metal dichalcogenides (TMDs) have exotic electronic properties. With success in easy synthesis of high quality TMD thin films, the potential applications will become more viable in electronics, optics, energy storage, and catalysis. Synthesis of TMD thin films has been mostly performed in vacuum or by thermolysis. So far, there is no solution phase synthesis to produce large-area thin films directly on target substrates. Here, this paper reports a one-step quick synthesis (within 45-90 ...

Electromechanical Nanogenerator-Cell Interaction Modulates Cell Activity.

Noninvasive methods for in situ electrical stimulation of human cells open new frontiers to future bioelectronic therapies, where controlled electrical impulses could replace the use of chemical drugs for disease treatment. Here, this study demonstrates that the interaction of living cells with piezoelectric nanogenerators (NGs) induces a local electric field that self-stimulates and modulates their cell activity, without applying an additional chemical or physical external stimulation. When cells are cultu...

Polar Side Chains Enhance Processability, Electrical Conductivity, and Thermal Stability of a Molecularly p-Doped Polythiophene.

Molecular doping of organic semiconductors is critical for optimizing a range of optoelectronic devices such as field-effect transistors, solar cells, and thermoelectric generators. However, many dopant:polymer pairs suffer from poor solubility in common organic solvents, which leads to a suboptimal solid-state nanostructure and hence low electrical conductivity. A further drawback is the poor thermal stability through sublimation of the dopant. The use of oligo ethylene glycol side chains is demonstrated t...

"Wiring" Fe-Nx -Embedded Porous Carbon Framework onto 1D Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media.

This study presents a novel metal-organic-framework-engaged synthesis route based on porous tellurium nanotubes as a sacrificial template for hierarchically porous 1D carbon nanotubes. Furthermore, an ultrathin Fe-ion-containing polydopamine layer has been introduced to generate highly effective FeNx C active sites into the carbon framework and to induce a high degree of graphitization. The synergistic effects between the hierarchically porous 1D carbon structure and the embedded FeNx C active sites in the ...

Photon-Pair Generation with a 100 nm Thick Carbon Nanotube Film.

Nonlinear optics based on bulk materials is the current technique of choice for quantum-state generation and information processing. Scaling of nonlinear optical quantum devices is of significant interest to enable quantum devices with high performance. However, it is challenging to scale the nonlinear optical devices down to the nanoscale dimension due to relatively small nonlinear optical response of traditional bulk materials. Here, correlated photon pairs are generated in the nanometer scale using a non...

Electrical Stress Influences the Efficiency of CH3 NH3 PbI3 Perovskite Light Emitting Devices.

Organic-inorganic hybrid perovskite materials are emerging as semiconductors with potential application in optoelectronic devices. In particular, perovskites are very promising for light-emitting devices (LEDs) due to their high color purity, low nonradiative recombination rates, and tunable bandgap. Here, using pure CH3 NH3 PbI3 perovskite LEDs with an external quantum efficiency (EQE) of 5.9% as a platform, it is shown that electrical stress can influence device performance significantly, increasing the E...

Inflammation-Triggered Cancer Immunotherapy by Programmed Delivery of CpG and Anti-PD1 Antibody.

Thermoresponsive Emission Switching via Lower Critical Solution Temperature Behavior of Organic-Inorganic Perovskite Nanoparticles.

Lead halide perovskites have shown much promise for high-performing solar cells due to their inherent electronic nature, and though the color of bright-light emitters based on perovskite nanoparticles can be tuned by halide mixing and/or size control, dynamic switching using external stimuli remains a challenge. This article reports an unprecedented lower critical solution temperature (LCST) for toluene solutions containing methylammonium lead bromide (MAPbBr3 ), oleic acid, alkylamines, and dimethylformami...

Few-Layer Black Phosphorus Carbide Field-Effect Transistor via Carbon Doping.

Black phosphorus carbide (b-PC) is a new family of layered semiconducting material that has recently been predicted to have the lightest electrons and holes among all known 2D semiconductors, yielding a p-type mobility (≈10(5) cm(2) V(-1) s(-1) ) at room temperature that is approximately five times larger than the maximum value in black phosphorus. Here, a high-performance composite few-layer b-PC field-effect transistor fabricated via a novel carbon doping technique which achieved a high hole mobility of...

Dynamic Orthogonal Switching of a Thermoresponsive Self-Organized Helical Superstructure.

Controllable manipulation of self-organized dynamic superstructures of functional molecular materials by external stimuli is an enabling enterprise. Herein, we have developed a thermally driven, self-organized helical superstructure, i.e., thermoresponsive cholesteric liquid crystal (CLC), by integrating a judiciously chosen thermoresponsive chiral molecular switch into an achiral liquid crystalline medium. The CLC in lying state, in both planar and twisted nematic cells, exhibits reversible in-plane orthog...

Understanding the Crystal Packing and Organic Thin-Film Transistor Performance in Isomeric Guest-Host Systems.

In order to understand how additives influence the structure and electrical properties of active layers in thin-film devices, a compositionally identical but structurally different guest-host system based on the syn and anti isomers of triethylsilylethynyl anthradithiophene (TES ADT) is systematically explored. The mobility of organic thin-film transistors (OTFTs) comprising anti TES ADT drops with the addition of only 0.01% of the syn isomer and is pinned at the mobility of OTFTs having pure syn isomer aft...

Photoswitchable Sn-Cyt c Solid-State Devices.

Electron transfer across proteins plays an important role in many biological processes, including those relevant for the conversion of solar photons to chemical energy. Previous studies demonstrated the generation of photocurrents upon light irradiation in a number of photoactive proteins, such as photosystem I or bacteriorhodopsin. Here, it is shown that Sn-cytochrome c layers act as reversible and efficient photoelectrochemical switches upon integration into large-area solid-state junctions. Photocurrents...

Tumor Microenvironment-Triggered Aggregation of Antiphagocytosis (99m) Tc-Labeled Fe3 O4 Nanoprobes for Enhanced Tumor Imaging In Vivo.

A tumor microenvironment responsive nanoprobe is developed for enhanced tumor imaging through in situ crosslinking of the Fe3 O4 nanoparticles modified with a responsive peptide sequence in which a tumor-specific Arg-Gly-Asp peptide for tumor targeting and a self-peptide as a "mark of self" are linked through a disulfide bond. Positioning the self-peptide at the outmost layer is aimed at delaying the clearance of the nanoparticles from the bloodstream. After the self-peptide is cleaved by glutathione within...

Achieving Large-Area Planar Perovskite Solar Cells by Introducing an Interfacial Compatibilizer.

Despite the recent unprecedented increase in the power conversion efficiencies (PCEs) of small-area devices (≤0.1 cm(2) ), the PCEs deteriorate drastically for PSCs of larger areas because of the incomplete film coverage caused by the dewetting of the hydrophilic perovskite precursor solutions on the hydrophobic organic charge-transport layers (CTLs). Here, an innovative method of fabricating scalable PSCs on all types of organic CTLs is reported. By introducing an amphiphilic conjugated polyelectrolyte a...

High-Performance Long-Term-Stable Dopant-Free Perovskite Solar Cells and Additive-Free Organic Solar Cells by Employing Newly Designed Multirole π-Conjugated Polymers.

Perovskite solar cells (PSCs) and organic solar cells (OSCs) are promising renewable light-harvesting technologies with high performance, but the utilization of hazardous dopants and high boiling additives is harmful to all forms of life and the environment. Herein, new multirole π-conjugated polymers (P1-P3) are developed via a rational design approach through theoretical hindsight, further successfully subjecting them into dopant-free PSCs as hole-transporting materials and additive-free OSCs as photoact...

Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels.

Exploring efficient and low-cost electrocatalysts for the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER) is critical for developing renewable energy technologies such as fuel cells, metal-air batteries, and water electrolyzers. A rational design of a catalyst can be guided by identifying descriptors that determine its activity. Here, a descriptor study on the ORR/OER of spinel oxides is presented. With a series of MnCo2 O4 , the Mn in octahedral sites is identified as an active site. Th...

Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries.

The exponential increase in research focused on two-dimensional (2D) metal oxides has offered an unprecedented opportunity for their use in energy conversion and storage devices, especially for promising next-generation rechargeable batteries, such as lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), as well as some post-lithium batteries, including lithium-sulfur batteries, lithium-air batteries, etc. The introduction of well-designed 2D metal oxide nanomaterials into next-generation rechargeab...

Flexible Blade-Coated Multicolor Polymer Light-Emitting Diodes for Optoelectronic Sensors.

A method to print two materials of different functionality during the same printing step is presented. In printed electronics, devices are built layer by layer and conventionally only one type of material is deposited in one pass. Here, the challenges involving printing of two emissive materials to form polymer light-emitting diodes (PLEDs) that emit light of different wavelengths without any significant changes in the device characteristics are described. The surface-energy-patterning technique is utilized...

High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites.

Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light-emitting applications during the past two years. Here, blue-emission (≈470 nm) Cs-based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High-brightness blue perovskite light-emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange ...

More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects.

Lithium-sulfur (Li-S) batteries have attracted tremendous interest because of their high theoretical energy density and cost effectiveness. The target of Li-S battery research is to produce batteries with a high useful energy density that at least outperforms state-of-the-art lithium-ion batteries. However, due to an intrinsic gap between fundamental research and practical applications, the outstanding electrochemical results obtained in most Li-S battery studies indeed correspond to low useful energy densi...

Noncentrosymmetric Magnets Hosting Magnetic Skyrmions.

The concept of a skyrmion, which was first introduced by Tony Skyrme in the field of particle physics, has become widespread in condensed matter physics to describe various topological orders. Skyrmions in magnetic materials have recently received particular attention; they represent vortex-like spin structures with the character of nanometric particles and produce fascinating physical properties rooted in their topological nature. Here, a series of noncentrosymmetric ferromagnets hosting skyrmions is revie...

Sub-Micrometer Surface-Patterned Ribbon Fibers and Textiles.

The worldwide annual production volume of textiles is nearly one hundred million metric tons. Most of these undergo treatments to achieve specific properties, such as color, hydrophobicity, antimicrobial, or UV protection, using chemicals that lead to collateral environmental consequences. There is great interest in developing alternative and sustainable strategies to achieve textile functionality that do not involve chemical treatment. Here we present a thermal drawing approach to achieve fiber surface gra...

Light Control of Charge Transfer and Excitonic Transitions in a Carbon Nanotube/Porphyrin Hybrid.

Carbon nanotube-chromophore hybrids are promising building blocks in order to obtain a controlled electro-optical transduction effect at the single nano-object level. In this work, a strong spectral selectivity of the electronic and the phononic response of a chromophore-coated single nanotube transistor is observed for which standard photogating cannot account. This paper investigates how light irradiation strongly modifies the coupling between molecules and nanotube within the hybrid by means of combined ...

Selective Nanoscale Mass Transport across Atomically Thin Single Crystalline Graphene Membranes.

Atomically thin single crystals, without grain boundaries and associated defect clusters, represent ideal systems to study and understand intrinsic defects in materials, but probing them collectively over large area remains nontrivial. In this study, the authors probe nanoscale mass transport across large-area (≈0.2 cm(2) ) single-crystalline graphene membranes. A novel, polymer-free picture frame assisted technique, coupled with a stress-inducing nickel layer is used to transfer single crystalline graphe...


Quick Search
Advertisement