Advertisement

Topics

PubMed Journal Database | Advanced materials (Deerfield Beach, Fla.) RSS

10:57 EDT 30th August 2016 | BioPortfolio

The US National Library of Medicine and National Institutes of Health manage PubMed.gov which comprises of more than 21 million records, papers, reports for biomedical literature, including MEDLINE, life science and medical journals, articles, reviews, reports and  books.  BioPortfolio aims to publish relevant information on published papers, clinical trials and news associated with users selected topics.

For example view all recent relevant publications on Epigenetics and associated publications and clincial trials.

Showing PubMed Articles 1–25 of 3,500+ from Advanced materials (Deerfield Beach, Fla.)

Anode-Engineered Protonic Ceramic Fuel Cell with Excellent Performance and Fuel Compatibility.

Directly utilizing hydrocarbon fuels, particularly methane, is advantageous yet challenging in high-performance protonic ceramic fuel cells. In this work, this technological hurdle is well addressed by selective deposition of secondary electrocatalysts within the porous Ni-cermet anode. This novel strategy sheds light on the development of multifunctional porous structures for energy and catalysis applications.

Ambient Aqueous Synthesis of Ultrasmall PEGylated Cu2- x Se Nanoparticles as a Multifunctional Theranostic Agent for Multimodal Imaging Guided Photothermal Therapy of Cancer.

Ultrasmall PEGylated Cu2- x Se nanoparticles with strong near-infrared absorption have been prepared by an ambient aqueous method. The resultant water-soluble and biocompatible nanoparticles are demonstrated to be a novel nanotheranostic agent for effective deep-tissue photoacoustic imaging, computed tomography imaging, single-photon emission computed tomography imaging, and photothermal therapy of cancer.

Black Phosphorus Based Photocathodes in Wideband Bifacial Dye-Sensitized Solar Cells.

Ultrasmall black phosphorus quantum dots (BPQDs) serve as the near-infrared light absorber and charge transfer layer in the photocathode of a bifacial n-type dye sensitized solar cell. Wideband light absorption and ≈20% enhancement in the light-to-electron efficiency are accomplished due to the fast carrier transfer and complementary light absorption by the BPQDs demonstrating that BP has large potential in photovoltaics.

Atomic-Sized Pores Enhanced Electrocatalysis of TaS2 Nanosheets for Hydrogen Evolution.

A plasma oxidation method is developed to fabricate atomic-scale pores in the basal planes of electrochemically inert TaS2 nanosheets to functionalize the 2D crystals with high electrocatalysis for hydrogen evolution reaction. Quantitative measurements of under-coordinated atoms at edges of the pores by aberration-corrected transmission electron microscopy reveal the intrinsic correlation between the defective atomic sites and electrocatalytic activities of 2D TaS2 .

Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering.

A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX3 , X = Br, Cl) quantum dots (QDs) with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

Water-Dispersible Fluorescent Silicon Nanoparticles and their Optical Applications.

Fluorescent silicon nanoparticles (SiNPs) attract considerable attention owing to their intrinsic advantages, including relatively strong fluorescence coupled with robust photostability, rich resource support and relatively low cost, industrial maturity, and good biocompatibility. Extensive efforts are devoted to developing effective methods for the synthesis of hydrogen or halogen-terminated SiNPs, which nevertheless need further surface modification to improve their stability and solubility for wide-rangi...

Selective Adsorption of Sulfur Dioxide in a Robust Metal-Organic Framework Material.

Selective adsorption of SO2 is realized in a porous metal-organic framework material, and in-depth structural and spectroscopic investigations using X-rays, infrared, and neutrons define the underlying interactions that cause SO2 to bind more strongly than CO2 and N2 .

Novel Metal Chalcogenide SnSSe as a High-Capacity Anode for Sodium-Ion Batteries.

A novel layered SnSSe material is designed as a high-performance anode for sodium-ion batteries with characteristics of high capacity, superior cyclability, facile synthetic method, and large-scale production ability. The transformation from bulk SnSSe particles into closely packed nanoplate aggregates with greater resistance to structure pulverization and the partial pseudocapacitive capacity contribution may engender the excellent cycling performance and rate capability.

Radiation Hardness and Self-Healing of Perovskite Solar Cells.

The radiation hardness of CH3 NH3 PbI3 -based solar cells is evaluated from in situ measurements during high-energy proton irradiation. These organic-inorganic perovskites exhibit radiation hardness and withstand proton doses that exceed the damage threshold of crystalline silicon by almost 3 orders of magnitude. Moreover, after termination of the proton irradiation, a self-healing process of the solar cells commences.

A Vinylene-Bridged Perylenediimide-Based Polymeric Acceptor Enabling Efficient All-Polymer Solar Cells Processed under Ambient Conditions.

All-polymer solar cells with 7.57% power conversion efficiency are achieved via a new perylenediimide-based polymeric acceptor. Furthermore, the device processed in ambient air without encapsulation can still reach a high power conversion efficiency (PCE) of 7.49%, which is a significant economic advantage from an industrial processing perspective. These results represent the highest PCE achieved from perylenediimide-based polymers.

High-Performance Photovoltaic Polymers Employing Symmetry-Breaking Building Blocks.

Two 1D-2D asymmetric benzodithiophenes (BDTs) as donor building blocks are designed and synthesized, combining the advantages of both 1D and 2D symmetric BDTs. The photovoltaic properties of the asymmetric BDT-based polymers are improved greatly in comparison with corresponding symmetric BDT-based polymers. This work provides a new approach to design prospective organic optoelectronic materials employing the symmetry-breaking strategy.

Compensated Ferrimagnetic Tetragonal Heusler Thin Films for Antiferromagnetic Spintronics.

Fully compensated ferrimagnets with tetragonal crystal structure have the potential for large spin-polarization and strong out-of-plane magnetic anisotropy; hence, they are ideal candidates for high-density-memory applications. Tetragonal Heusler thin films with compensated magnetic state are realized by substitution of Pt in Mn3-x Ptx Ga. Furthermore, the bilayer formed from compensated/uncompensated Mn-Pt-Ga layers is utilized to accomplish exchange bias up to room temperature.

Robust Underwater Oil-Repellent Material Inspired by Columnar Nacre.

Inspired by natural columnar nacre, artificial montmorillonite/hydroxyethyl cellulose columnar nacre-like materials with a site-specific layered structure in the interior and a hierarchical columnar structure on the surface are prepared. The materials exhibited improved tensile strength, good chemical stability in seawater, superior resistance to sand grain impingement, and robust underwater low adhesive superoleophobicity.

Dual-Template Synthesis of 2D Mesoporous Polypyrrole Nanosheets with Controlled Pore Size.

The first synergistic dual-template self-assembly approach is presented for bottom-up construction of 2D mesoporous polypyrrole nanosheets based on different supramolecular assemblies, which feature a double-layered architecture, controlled pore sizes, ultrathin thickness, and large surface area. The unique structure rends them with superior reversible discharge capability, rate performance, and stable cyclability when serving as the cathode materials for Na-ion batteries.

Controlling Molecular Ordering in Aqueous Conducting Polymers Using Ionic Liquids.

The molecular ordering of aqueous conducting polymers is controlled using a rational method. By introducing various ionic liquids, which have designed electrostatic interactions to PEDOT:PSS solutions, the evolution of the molecular ordering of the PEDOT is manipulated. Consequently, highly ordered nanostructures are achieved with a reduced π-π stacking distance of ≈3.38 Å and, thus, a maximum σdc of ≈2100 S cm(-1) .

Piezophototronic Effect in Single-Atomic-Layer MoS2 for Strain-Gated Flexible Optoelectronics.

Strain-gated flexible optoelectronics are reported based on monolayer MoS2 . Utilizing the piezoelectric polarization created at metal-MoS2 interface to modulate the separation/transport of photogenerated carriers, the piezophototronic effect is applied to implement atomic-layer-thick phototransistor. Coupling between piezoelectricity and photogenerated carriers may enable the development of novel optoelectronics.

Planar-Processed Polymer Transistors.

Planar-processed polymer transistors are proposed where the effective charge injection and the split unipolar charge transport are all on the top surface of the polymer film, showing ideal device characteristics with unparalleled performance. This technique provides a great solution to the problem of fabrication limitations, the ambiguous operating principle, and the performance improvements in practical applications of conjugated-polymer transistors.

Injectable and Cytocompatible Tough Double-Network Hydrogels through Tandem Supramolecular and Covalent Crosslinking.

Double-network theory is extended to include guest-host interactions, enabling injectability and cytcompatibility of tough hydrogels. Noncovalent interactions are used as a sacrificial network to toughen covalently crosslinked hydrogels formed from hyaluronic acid. Shear thinning of supramolecular bonds allows hydrogel injection and rapid self-healing, while gentle reaction conditions permit cell encapsulation with high viability.

A Flexible and Wearable Lithium-Oxygen Battery with Record Energy Density achieved by the Interlaced Architecture inspired by Bamboo Slips.

A flexible and wearable lithium-oxygen (air) battery inspired by Chinese bamboo slips is constructed. In this novel battery, cathodes and anodes are woven without an air diffusion layer and any outer packaging; besides, the woven structure allows oxygen to access the cathodes from both sides freely, endowing the battery with a record energy density of over 523 W h kg(-1) .

Fluorocarbon Oil Reinforced Triple Emulsion Drops.

Fluorocarbon oil reinforced triple emulsion drops are prepared to encapsulate a broad range of polar and non-polar cargoes in a single platform. In addition, it is demonstrated that the fluorocarbon oil within the emulsion drop acts as an effective diffusion barrier as well as a non-adhesive layer, enabling highly efficient encapsulation and retention of small molecules and active biomolecules in microcapsules.

Large-Size 2D β-Cu2 S Nanosheets with Giant Phase Transition Temperature Lowering (120 K) Synthesized by a Novel Method of Super-Cooling Chemical-Vapor-Deposition.

2D triangular β-Cu2 S nanosheets with large size and high quality are synthesized by a novel method of super-cooling chemical-vapor-deposition. The phase transition of this 2D material from β-Cu2 S to γ-Cu2 S occurs at 258 K (-15 °C), such transition temperature is 120 K lower than that of its bulk counterpart (about 378 K).

Explosives: Metal-Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability (Adv. Mater. 28/2016).

On page 5837, L. Yang, B. Wang, and co-workers describe a metal-organic framework (MOF) templating method to synthesize copper azide uniformly anchored in a 3D interconnected carbon matrix and evenly spaced by the electron-conductive joints. This strategy sheds light on the preparation of powerful yet safe primary explosives and fulfills the need for controllable explosive systems.

Contents: (Adv. Mater. 28/2016).

An Ultralong, Highly Oriented Nickel-Nanowire-Array Electrode Scaffold for High-Performance Compressible Pseudocapacitors.

Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures.


Quick Search
Advertisement