PubMed Journals Articles About "Direct Transfer Patterning Electrically Small Antennas Onto Three" RSS

01:59 EDT 1st September 2015 | BioPortfolio

Direct Transfer Patterning Electrically Small Antennas Onto Three PubMed articles on BioPortfolio. Our PubMed references draw on over 21 million records from the medical literature. Here you can see the latest Direct Transfer Patterning Electrically Small Antennas Onto Three articles that have been published worldwide.

More Information about "Direct Transfer Patterning Electrically Small Antennas Onto Three" on BioPortfolio

We have published hundreds of Direct Transfer Patterning Electrically Small Antennas Onto Three news stories on BioPortfolio along with dozens of Direct Transfer Patterning Electrically Small Antennas Onto Three Clinical Trials and PubMed Articles about Direct Transfer Patterning Electrically Small Antennas Onto Three for you to read. In addition to the medical data, news and clinical trials, BioPortfolio also has a large collection of Direct Transfer Patterning Electrically Small Antennas Onto Three Companies in our database. You can also find out about relevant Direct Transfer Patterning Electrically Small Antennas Onto Three Drugs and Medications on this site too.

Showing "Direct Transfer Patterning Electrically Small Antennas onto Three" PubMed Articles 1–25 of 18,000+

Extremely Relevant

Bio-Inspired Direct Patterning Functional Nano-Thin Microlines: Controllable Liquid Transfer.

Developing a general and low cost strategy that enables direct patterning microlines with nano-meter thickness from versatile of liquid phase functional materials, and precise positioning them on various substrates remain a challenge. Herein, drawn inspirations from the oriental wisdom to control ink transfer by Chinese brushes, we developed a facile and general writing strategy to directly pattern various functional microlines with homogeneous distribution and nano-meter scaled thickness. It is demonstrate...

Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion.

We present a roll-to-roll, continuous patterning and transfer of graphene sheets capable of residue-free and fast patterning. The graphene sheet is supported with dispersive adhesion. Graphene is continuously patterned by the difference in adhesion forces with a pre-defined embossed roller. The patterned graphene sheet adheres to the polyethylene terephthalate (PET)/silicone with very low strength and can be easily transferred to various substrates without the aid of any heating mechanism. The width of the ...

Pushing the limits of radiofrequency (RF) neuronal telemetry.

In a previous report it was shown that the channel capacity of an in vivo communication link using microscopic antennas at radiofrequency is severely limited by the requirement not to damage the tissue surrounding the antennas. For dipole-like antennas the strong electric field dissipates too much power into body tissues. Loop-type antennas have a strong magnetic near field and so dissipate much less power into the surrounding tissues but they require such a large current that the antenna temperature is rai...

Laser direct synthesis of silicon nanowire field effect transistors.

We demonstrate a single-step, laser-based technique to fabricate silicon nanowire field effect transistors. Boron-doped silicon nanowires are synthesized using a laser-direct-write chemical vapor deposition process, which can produce nanowires as small as 60 nm, far below the diffraction limit of the laser wavelength of 395 nm. In addition, the method has the advantages of in situ doping, catalyst-free growth, and precise control of nanowire position, orientation, and length. Silicon nanowires are directly ...

Functional Metamirrors Using Bianisotropic Elements.

Conventional mirrors obey the simple reflection law that a plane wave is reflected as a plane wave, at the same angle. To engineer spatial distributions of fields reflected from a mirror, one can either shape the reflector or position some phase-correcting elements on top of a mirror surface. Here we show, both theoretically and experimentally, that full-power reflection with general control over the reflected wave phase is possible with a single-layer array of deeply subwavelength inclusions. These propose...

Flexible, Polarization-Diverse UWB Antennas for Implantable Neural Recording Systems.

Implanted antennas for implant-to-air data communications must be composed of material compatible with biological tissues. We design single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency ran...

Relevant

Patterning Magnetic Regions in Hydrogenated Graphene Via E-Beam Irradiation.

Partially hydrogenated graphene is ferromagnetic and may be patterned by electron-beam irradiation. Sequential patterning produces a patterned magnetic array. Removal of the hydrogen atoms also can convert electrically insulating fully hydrogenated graphene back into conductive graphene, enabling the writing of chemically isolated, dehydrogenated graphene nanoribbons as narrow as 100 nm.

K-space polarimetry of bullseye plasmon antennas.

Surface plasmon resonators can drastically redistribute incident light over different output wave vectors and polarizations. This can lead for instance to sub-diffraction sized nanoapertures in metal films that beam and to nanoparticle antennas that enable efficient conversion of photons between spatial modes, or helicity channels. We present a polarimetric Fourier microscope as a new experimental tool to completely characterize the angle-dependent polarization-resolved scattering of single nanostructures. ...

Velocity Map Imaging Study of Charge-Transfer and Proton-Transfer Reactions of CH3 Radicals with H3(.)

The velocity map imaging method has been applied to crossed beam studies of charge transfer and proton transfer between methyl (CH3) radicals formed by pyrolysis and H3(+) cations over the collision energy range from 1.2 to 3.4 eV. Vibrational excitation in the H3(+) reactants plays an important role both in promoting endoergic charge transfer and in supplying energy to the products of the proton-transfer reaction. Excited H3(+) reactants with vibrational energy in excess of the barrier lead to energy-reson...

Spontaneous hot-electron light emission from electron-fed optical antennas.

Nanoscale electronics and photonics are among the most promising research areas providing functional nano-components for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically-driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating condi...

Nanotubes Connect CD4+ T Cells to Airway Smooth Muscle Cells: Novel Mechanism of T Cell Survival.

Contact between airway smooth muscle (ASM) cells and activated CD4(+) T cells, a key interaction in diseases such as asthma, triggers ASM cell proliferation and enhances T cell survival. We hypothesized that direct contact between ASM and CD4(+) T cells facilitated the transfer of anti-apoptotic proteins via nanotubes, resulting in increased survival of activated CD4(+) T cells. CD4(+) T cells, isolated from PBMCs of healthy subjects, when activated and cocultured with ASM cells for 24 h, formed nanotubes t...

Flexible Sixteen Antenna Array for Microwave Breast Cancer Detection.

Radar based Microwave Imaging (MWI) has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues has been studied over a wide frequency band for this application. We design single and dual-polarization antennas for wireless ultra-wideband breast cancer detection systems using an inhomogeneous multilayer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole an...

In situ formation and photo patterning of emissive quantum dots in small organic molecules.

Nanostructured composites of inorganic and organic materials are attracting extensive interest for electronic and optoelectronic device applications. Here we report a novel method for the fabrication and patterning of metal selenide nanoparticles in organic semiconductor films that is compatible with solution processable large area device manufacturing. Our approach is based upon the controlled in situ decomposition of a cadmium selenide precursor complex in a film of the electron transporting material 1,3,...

A General Design Strategy for Block Copolymer Directed Self-Assembly Patterning of Integrated Circuits Contact Holes using an Alphabet Approach.

Directed Self-Assembly (DSA) is a promising lithography candidate for technology nodes beyond 14 nm. Researchers have shown contact hole patterning for random logic circuits using DSA with small physical templates. This paper introduces an alphabet approach that uses a minimal set of small physical templates to pattern all contacts configurations on integrated circuits. We illustrate, through experiments, a general and scalable template design strategy that links the DSA material properties to the technolog...

Subcellular Patterning: Axonal Domains with Specialized Structure and Function.

Myelinated axons are patterned into discrete and often-repeating domains responsible for the efficient and rapid transmission of electrical signals. These domains include nodes of Ranvier and axon initial segments. Disruption of axonal patterning leads to nervous system dysfunction. In this review, we introduce the concept of subcellular patterning as applied to axons and discuss how these patterning events depend on both intrinsic, cytoskeletal mechanisms and extrinsic, myelinating glia-dependent mechanism...

Controlled motion of electrically neutral microparticles by pulsed direct current.

A controlled motion of electrically neutral microparticles in a conductive liquid at high temperatures has not yet been realized under the uniform direct electric current field. We propose a simple method, which employs pulsed direct current to a conductive liquid metal containing low-conductivity objects at high temperature. The electric current enables the low-conductivity particles to pass from the centre towards the various surfaces of the high-conductivity liquid metal. Most interestingly, the directio...

Quantum Optical Signature of Plasmonically Coupled Nanocrystal Quantum Dots.

Small clusters of two to three silica-coated nanocrystals coupled to plasmonic gap-bar antennas can exhibit photon antibunching, a characteristic of single quantum emitters. Through a detailed analysis of their photoluminescence emissions characteristics, it is shown that the observed photon antibunching is the evidence of coupled quantum dot formation resulting from the plasmonic enhancement of dipole-dipole interaction.

Nonhelical Inverse Transfer of a Decaying Turbulent Magnetic Field.

In the presence of magnetic helicity, inverse transfer from small to large scales is well known in magnetohydrodynamic (MHD) turbulence and has applications in astrophysics, cosmology, and fusion plasmas. Using high resolution direct numerical simulations of magnetically dominated self-similarly decaying MHD turbulence, we report a similar inverse transfer even in the absence of magnetic helicity. We compute for the first time spectral energy transfer rates to show that this inverse transfer is about half a...

Functional Characteristics of Spirilloxanthin and Keto-Bearing Analogues in Light-Harvesting LH2 Complexes from Rhodobacter sphaeroides with a Genetically Modified Carotenoid Synthesis Pathway.

Light-harvesting 2 complexes (LH2) from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length...

Patterning linear and nonlinear optical properties of photosensitive glasses by femtosecond structured light.

We report on structured light-induced femtosecond direct laser writing (DLW) under tight focusing in non-commercial silver-containing zinc phosphate glass, which leads to original patterns of fluorescent silver clusters. These fluorescence topologies show unique features of frustrated diffusion of charged species, giving rise to distorted silver cluster spatial distributions. Fluorescence and second harmonic generation correlative microscopy demonstrate the realization of structured light-induced direct las...

Accuracy validation of T2L2 time transfer in co-location.

The Time Transfer by Laser Link (T2L2) experiment has been developed in close collaboration between Centre National d'Etudes Spatiales and Observatoire de la Côte d'Azur. The aim is to synchronize remote ultra-stable clocks over large-scale distances using two laser ranging stations. This ground to space time transfer has been derived from laser telemetry technology with dedicated space equipment designed to record arrival time of laser pulses on board the satellite. For 3 years, specific campaigns have be...

Receptor-mediated transfer of IgG and albumin at cerebrospinal fluid interfaces.

Receptor-mediated transfer of IgG and albumin has been suggested to occur also at cerebrospinal fluid interfaces. We point out findings of statistically unchanging IgG/albumin ratios along the lumbar CSF column which propose that such transfer should be absent or very small at cerebrospinal fluid interfaces.

Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime.

Retardation-based stripe antennas due to the excitation of spoof surface plasmons on a corrugated metal stripe are proposed and numerically studied in the terahertz regime, revealing sharp Fabry-Perot resonances in scattering cross-section spectra with strongly enhanced local fields. The order of the resonance exhibiting the sharpest scattering cross section and strongest field enhancements (FEs) is found to coincide with the number of grooves, due to the hybridization of the antenna resonance with the indi...

Structure-based Lead Optimization and Biological Evaluation of BAX Direct Activators as Novel Potential Anticancer Agents.

The first direct activator of BAX, a pro-apoptotic member of the BCL-2 family, has been recently identified. Herein, a structure-based lead optimization turned out into a small series of analogs, where 8 (BTC-8) is the most potent compound published so far. 8 was used as pharmacological tool to ascertain, for the first time, the anticancer potential of BAX direct activators and the obtained results would suggest that BAX direct activators are potential future anticancer drugs rather than venoms.

Modulation of the extracellular matrix patterning of thrombospondins by actin dynamics and thrombospondin oligomer state.

Thrombospondins (TSPs) are evolutionarily-conserved, secreted glycoproteins that interact with cell surfaces and extracellular matrix (ECM) and have complex roles in cell interactions. Unlike the structural components of the ECM that form networks or fibrils, TSPs are deposited into ECM as arrays of nanoscale puncta. The cellular and molecular mechanisms for the patterning of TSPs in ECM are poorly understood. In the present study, we investigated whether the mechanisms of TSP patterning in cell-derived ECM...



Advertisement
 
Advertisement
 

PubMed Database Quicklinks