PubMed Journals Articles About "Direct Transfer Patterning Electrically Small Antennas Onto Three" RSS

11:52 EDT 30th September 2014 | BioPortfolio

Direct Transfer Patterning Electrically Small Antennas Onto Three PubMed articles on BioPortfolio. Our PubMed references draw on over 21 million records from the medical literature. Here you can see the latest Direct Transfer Patterning Electrically Small Antennas Onto Three articles that have been published worldwide.

More Information about "Direct Transfer Patterning Electrically Small Antennas Onto Three" on BioPortfolio

We have published hundreds of Direct Transfer Patterning Electrically Small Antennas Onto Three news stories on BioPortfolio along with dozens of Direct Transfer Patterning Electrically Small Antennas Onto Three Clinical Trials and PubMed Articles about Direct Transfer Patterning Electrically Small Antennas Onto Three for you to read. In addition to the medical data, news and clinical trials, BioPortfolio also has a large collection of Direct Transfer Patterning Electrically Small Antennas Onto Three Companies in our database. You can also find out about relevant Direct Transfer Patterning Electrically Small Antennas Onto Three Drugs and Medications on this site too.

Showing "Direct Transfer Patterning Electrically Small Antennas onto Three" PubMed Articles 1–25 of 17,000+

Extremely Relevant

Developmental patterning by gradients of mobile small RNAs.

Development of multicellular organisms depends on intercellular communication via mobile signals that provide positional information to coordinate cell fate decisions. In addition to peptide ligands, transcription factors, and hormones, plants use small RNAs as positional instructive signals. The unique patterning properties of small RNA gradients resulting from regulated mobility suggest conceptual similarities to the function of animal morphogens, and provide robustness and precision to the formation of c...

Effect of Two Different Superstrate Layers On Bismuth Titanate (BiT) Array Antennas.

The microwave industry has shown increasing interest in electronic ceramic material (ECM) due to its advantages, such as light weight, low cost, low loss, and high dielectric strength. In this paper, simple antennas covered by superstrate layers for 2.30 GHz to 2.50 GHz are proposed. The antennas are compact and have the capability of producing high performance in terms of gain, directivity, and radiation efficiency. Bismuth titanate with high dielectric constant of 21, was utilized as the ECM, while th...

High-speed scanning thermal lithography for nanostructuring of electronic devices.

We report a detailed analysis on the use of simultaneous substrate heating in conjunction with scanning thermal lithography (SThL) to dramatically increase the patterning speed of conventional SThL systems. The investigation consists of finite element simulations as well as practical assessments of the speed at which different organic precursors are thermally converted to produce standalone electrically active and passive nanostructures. As a proof of concept the high-speed SThL method was used to pattern s...

Relevant

Novel Wideband MIMO Antennas That Can Cover the Whole LTE Spectrum in Handsets and Portable Computers.

A dual resonant antenna configuration is developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the LTE spectrums in portable communication equipment. The bandwidth that can be covered by each antenna exceeds 70% without using any matching or tuning circuits, with efficiencies that reach 80%. Thus, a dual configuration of them is capable of covering up to 39 LTE (4G) bands besides the existing 2G and 3G bands. 2 × 2 MIMO confi...

Ultrafast infrared spectroscopy in photosynthesis.

In recent years visible pump/mid-IR probe spectroscopy has established itself as a key technology to unravel structure-function relationships underlying the photo-dynamics of complex molecular systems. In this contribution we review the most important applications of mid-infrared absorption difference spectroscopy with sub-picosecond time-resolution to photosynthetic complexes. Considering several examples, such as energy transfer in photosynthetic antennas and electron transfer in reaction centers and even...

Precisely Patterning Graphene Sheets through a Liquid-Bridge Induced Strategy.

A liquid-bridge induced precisely positioning strategy for graphene patterning is reported. Owing to well-defined assembly of graphene, a flexible bending-sensitive circuit is generated, allowing electrons to stop/pass this graphene-based circuit depending on mechanical pressing/relaxing. The present approach may advance existing applications of patterning graphene in the optical/electronic industry.

Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures.

The well-known Leidenfrost effect is the formation of a vapor layer between a liquid and an underlying hot surface. This insulating vapor layer severely degrades heat transfer and results in surface dryout. We measure the heat transfer enhancement and dryout prevention benefits accompanying electrostatic suppression of the Leidenfrost state. Interfacial electric fields in the vapor layer can attract liquid towards the surface and promote wetting. This principle can suppress dryout even at ultrahigh temperat...

Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene.

We present terahertz (THz) detectors based on top-gated graphene field effect transistors (GFETs) with integrated split-bow-tie antennas. The GFETs were fabricated using graphene grown by chemical vapor deposition (CVD). The THz detectors are capable of room-temperature rectification of a 0.6 THz signal and achieve a maximum optical responsivity better than 14 V/W and minimum optical noise-equivalent power (NEP) of 515 pW/Hz^0.5. Our results are a significant improvement over previous work on graphene direc...

Prevalence, distribution and transfer of small β-lactamase-containing plasmids in Swedish Haemophilus influenzae.

The β-lactamase genes of Haemophilus influenzae are commonly positioned on large integrative and conjugative elements, but a group of blaTEM-carrying small plasmids (4000-6000 bp) with a common structural backbone have recently been characterized. In this study we investigated the epidemiological significance and potential for transfer of this group of small plasmids.

Spatially controlled fabrication of a bright fluorescent nanodiamond-array with enhanced far-red Si-V luminescence.

We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe 'dip-pen' nanolithography technique using electrostatically driven transfer of nanodiamonds from 'inked' cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by inc...

Direct Imaging of siRNA Electrotransfer at the Single-Cell Level.

Short interfering RNAs (siRNAs) represent new potential therapeutic tools owing to their capacity to induce strong, sequence-specific, gene silencing in cells. Electropulsation is one of the physical methods successfully used to transfer siRNA into living cells in vitro and in vivo. Although this approach is proved to be effective for silencing gene expression by RNA interference, very little is known about the basic processes supporting siRNA transfer. In this study, we investigated, by direct visualizatio...

Programmable Patterning of Protein Bioactivity by Visible Light.

The simple and quick patterning of functional proteins on engineered surfaces affords an opportunity to fabricate protein microarrays in lab-on-chip systems. We report on the programmable patterning of proteins as well as the local activation of enzymes by visible light. We successfully generated functional protein patterns with different geometries in situ and demonstrated the specific patterning of multiple kinds of proteins side-by-side without the need for specific linker molecules or elaborate surface ...

Room Temperature Electrically Injected Polariton Laser.

Room temperature electrically pumped inversionless polariton lasing is observed from a bulk GaN-based microcavity diode. The low nonlinear threshold for polariton lasing occurs at 169  A/cm^{2} in the light-current characteristics, accompanied by a collapse of the emission linewidth and small blueshift of the emission peak. Measurement of angle-resolved luminescence, polariton condensation and occupation in momentum space, and output spatial coherence and polarization have also been made. A second thres...

Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns.

Graphene plasmons promise unique possibilities for controlling light in nanoscale devices and for merging optics with electronics. Here,we introduce a versatile platform technology based on resonant optical antennas and conductivity patterns for launching and controlling of propagating graphene plasmons, constituting an essential step for the development of graphene plasmonic circuits. We demonstrate the launching and focusing of infrared graphene plasmons with geometrically tailored antennas, and how they ...

Anatomy of the direct small branches of the proper digital nerve of the fingers: A cadaveric study.

The purpose of this study was to evaluate the anatomical constancy of the direct small branches of the proper digital nerve.

Photo-generated THz antennas.

Electromagnetic resonances in conducting structures give rise to the enhancement of local fields and extinction efficiencies. Conducting structures are conventionally fabricated with a fixed geometry that determines their resonant response. Here, we challenge this conventional approach by demonstrating the photo-generation of THz linear antennas on a flat semiconductor layer by the structured optical illumination through a spatial light modulator. Free charge carriers are photo-excited only on selected area...

A Monolithic Electrically Injected Nanowire Array Edge-Emitting Laser on (001) Silicon.

A silicon-based laser, preferably electrically pumped, has long been a scientific and engineering goal. We demonstrate here, for the first time, an edge-emitting InGaN/GaN disk-in-nanowire array electrically pumped laser emitting in the green (λ=533nm) on (001)silicon substrate. The devices display excellent dc and dynamic characteristics with values of threshold current density, differential gain, T0 and small signal modulation bandwidth equal to 1.76kA/cm2, 3x10-17cm2, 232K and 5.8GHz respectively under ...

Patterning of Polymeric Cell Culture Substrates.

The purpose of this chapter is to provide a summary of polymer patterning technologies for biological applications and detailed instructions for resist-free deep ultraviolet (UV) patterning of poly(styrene). Photochemical modifications of this polymer yield unstable peroxides together with stable oxidized chemical groups. The altered physicochemical properties of the polymer surface influence protein adsorption and cell adhesion. HepG2 (human hepatoma cell line), fibroblasts (L929, murine fibroblast line), ...

Surface Microfluidic Patterning and Transporting Organic Small Molecules.

A microfluidic method is developed to pattern organic small molecules directly in air. When heated to above its melting point, a powder melts into liquid drops which propagate along the pattern area. The method can further be applied to transport other dye molecules, to create multicolored patterns in one step. The fluorescence microscopy image shows rhodamine B (red), fluorescein (green), and calcein blue (blue) doped N-ethyl-d-glucamine on 100-μm Au lines.

Methods for retrovirus-mediated gene transfer to tumor cells.

The past several years have seen a renewed interest in active immunotherapy approaches for the treatment of human tumors because of the exciting findings learned from preclinical studies employing genetically altered tumor vaccines. Many clinical protocols are currently being conducted using several different genetic approaches for augmenting antitumor immune responses. These include: 1. Ex vivo gene transfer of cytokine genes into tumor cells. 2. Ex vivo gene transfer of suicide genes into tumor cells with...

Ambipolar Molybdenum Diselenide Field-Effect Transistors: Field-Effect and Hall Mobilities.

We report a room temperature study on the electrical response of field-effect transistors (FETs) based on few-layered MoSe2, grown by a chemical vapor transport technique, mechanically exfoliated onto SiO2. In contrast to previous reports on MoSe2 FETs electrically contacted with Ni, MoSe2 FETs electrically contacted with Ti display ambipolar behavior with current on to off ratios up to 10(6) for both hole and electron channels when applying a small excitation voltage. A rather small hysteresis is observed ...

Detection of stealthy small amphiphilic biomarkers.

Pathogen-specific biomarkers are secreted in the host during infection. Many important biomarkers are not proteins, but rather small molecules that cannot be directly detected by conventional methods. However, these small molecule biomarkers, such as phenolic glycolipid-I (PGL-I) of Mycobacterium leprae and Mycobactin T (MbT) of Mycobacterium tuberculosis, are critical to the pathophysiology of infection, and may be important in the development of diagnostics, vaccines and novel therapeutic strategies. Meth...

Microbial nanowires for bioenergy applications.

Microbial nanowires are electrically conductive filaments that facilitate long-range extracellular electron transfer. The model for electron transport along Shewanella oneidensis nanowires is electron hopping/tunneling between cytochromes adorning the filaments. Geobacter sulfurreducens nanowires are comprised of pili that have metal-like conductivity attributed to overlapping pi-pi orbitals of aromatic amino acids. The nanowires of Geobacter species have been implicated in direct interspecies electron tran...

One-Step Transfer and Integration of Multifunctionality in CVD Graphene by TiO2 /Graphene Oxide Hybrid Layer.

We present a straightforward method for simultaneously enhancing the electrical conductivity, environmental stability, and photocatalytic properties of graphene films through one-step transfer of CVD graphene and integration by introducing TiO2 /graphene oxide layer. A highly durable and flexible TiO2 layer is successfully used as a supporting layer for graphene transfer instead of the commonly used PMMA. Transferred graphene/TiO2 film is directly used for measuring the carrier transport and optoelectronic ...

Plasma Microcontact Patterning (PμCP): A Technique for the Precise Control of Surface Patterning at Small-Scale.

Plasma microcontact patterning (PμCP) is a simple, efficient, and cost-effective method for the precise patterning of molecules on surfaces. It combines the use of low-pressure plasma with an elastomeric 3D mask to spatially control the removal of molecules, such as proteins, from a surface. The entire PμCP process is subdivided into three main steps: surface precoating, plasma micropatterning, and a surface postcoating step. Surfaces are first precoated with a molecular species and then placed in close c...


Search BioPortfolio:
Loading
Advertisement
Advertisement

PubMed Database Quicklinks