Advertisement

Topics

PubMed Journals Articles About "Functional Hybrid Memristor Crossbar Array CMOS System Data" RSS

02:13 EDT 31st August 2016 | BioPortfolio

Functional Hybrid Memristor Crossbar Array CMOS System Data PubMed articles on BioPortfolio. Our PubMed references draw on over 21 million records from the medical literature. Here you can see the latest Functional Hybrid Memristor Crossbar Array CMOS System Data articles that have been published worldwide.

More Information about "Functional Hybrid Memristor Crossbar Array CMOS System Data" on BioPortfolio

We have published hundreds of Functional Hybrid Memristor Crossbar Array CMOS System Data news stories on BioPortfolio along with dozens of Functional Hybrid Memristor Crossbar Array CMOS System Data Clinical Trials and PubMed Articles about Functional Hybrid Memristor Crossbar Array CMOS System Data for you to read. In addition to the medical data, news and clinical trials, BioPortfolio also has a large collection of Functional Hybrid Memristor Crossbar Array CMOS System Data Companies in our database. You can also find out about relevant Functional Hybrid Memristor Crossbar Array CMOS System Data Drugs and Medications on this site too.

Showing "Functional Hybrid Memristor Crossbar Array CMOS System Data" PubMed Articles 1–25 of 45,000+

Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays.

In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available ...


Miniaturizing Ultrasonic System for Portable Health Care and Fitness.

We present a miniaturized portable ultrasonic imager that uses a custom ASIC and a piezoelectric transducer array to transmit and capture 2-D sonographs. The ASIC, fabricated in 0.18 μm 32 V CMOS process, contains 7 identical channels, each with high-voltage level-shifters, high-voltage DC-DC converters, digital TX beamformer, and RX front-end. The chip is powered by a single 1.8 V supply and generates 5 V and 32 V internally using on-chip charge pumps with an efficiency of 33% to provide 32 V pulses for d...

Improving Detection Accuracy of Memristor-Based Bio-Signal Sensing Platform.

Recently a novel neuronal activity sensor exploiting the intrinsic thresholded integrator capabilities of memristor devices has been proposed. Extracellular potentials captured by a standard bio-signal acquisition platform are fed into a memristive device which reacts to the input by changing its resistive state (RS) only when the signal ampitude exceeds a threshold. Thus, significant peaks in the neural signal can be stored as non-volatile changes in memristor resistive state whilst noise is effectively su...


High-channel-count, high-density microelectrode array for closed-loop investigation of neuronal networks.

We present a system for large-scale electrophysiological recording and stimulation of neural tissue with a planar topology. The recording system has 65,536 electrodes arranged in a 256 × 256 grid, with 25.5 μm pitch, and covering an area approximately 42.6 mm(2). The recording chain has 8.66 μV rms input-referred noise over a 100 ~ 10k Hz bandwidth while providing up to 66 dB of voltage gain. When recording from all electrodes in the array, it is capable of 10-kHz sampling per electrode. All electrodes c...

Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing.

A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is pr...

Automated vision system for fabric defect inspection using Gabor filters and PCNN.

In this study, an embedded machine vision system using Gabor filters and Pulse Coupled Neural Network (PCNN) is developed to identify defects of warp-knitted fabrics automatically. The system consists of smart cameras and a Human Machine Interface (HMI) controller. A hybrid detection algorithm combing Gabor filters and PCNN is running on the SOC processor of the smart camera. First, Gabor filters are employed to enhance the contrast of images captured by a CMOS sensor. Second, defect areas are segmented by ...

A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug dis...

Impact of data layouts on the efficiency of GPU-accelerated IDW interpolation.

This paper focuses on evaluating the impact of different data layouts on the computational efficiency of GPU-accelerated Inverse Distance Weighting (IDW) interpolation algorithm. First we redesign and improve our previous GPU implementation that was performed by exploiting the feature of CUDA dynamic parallelism (CDP). Then we implement three versions of GPU implementations, i.e., the naive version, the tiled version, and the improved CDP version, based upon five data layouts, including the Structure of Arr...

Real-time biochemical sensor based on Raman scattering with CMOS contact imaging.

This work presents a biochemical sensor based on Raman scattering with Complementary metal-oxide-semiconductor (CMOS) contact imaging. This biochemical optical sensor is designed for detecting the concentration of solutions. The system is built with a laser diode, an optical filter, a sample holder and a commercial CMOS sensor. The output of the system is analyzed by an image processing program. The system provides instant measurements with a resolution of 0.2 to 0.4 Mol. This low cost and easy-operated sma...

A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity.

In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 10⁷ when illuminated by a 405-nm diode laser and 1/...

Reconfigurable hybrid metamaterial waveguide system at terahertz regime.

We propose an optically controlled reconfigurable hybrid metamaterial waveguide system at terahertz frequencies, which consists of a two dimensional gold cut wire array deposited on top of a dielectric slab waveguide. Numerical findings reveal that this device is able to realize dynamic transformation from double electromagnetically induced transparency like material to ultra-narrow band guided mode resonance (GMR) filter by controlling the optically excited free carriers in gallium arsenide pads inserted b...

A Double-Side CMOS-CNT Biosensor Array With Padless Structure for Simple Bare-Die Measurements in a Medical Environment.

This paper presents a double-side CMOS-carbon nanotube (CNT) sensor array for simple bare-die measurements in a medical environment based on a 0.35 μm standard CMOS process. This scheme allows robust measurements due to its inherent back-side rectifying diodes with a high latch-up resistance. In particular, instead of using pads, only two contact metal structures: a wide ring structure around the sensor area on the front side and a plate structure at the backside are used for both power and single I/O line...

Software-based PET-MR image coregistration: combined PET-MRI for the rest of us!

With the introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), a new imaging option to acquire multimodality images with complementary anatomical and functional information has become available. Compared with hybrid PET/computed tomography (CT), hybrid PET/MRI is capable of providing superior anatomical detail while removing the radiation exposure associated with CT. The early adoption of hybrid PET/MRI, however, has been limited.

Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.

Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence...

A CMOS sensor for rapid testing of pathogen susceptibility to pore-forming antibiotics.

An integrated CMOS chip is implemented in 0.13μm technology that detects the efficacy of pore-forming antibiotics on bacterial samples in 10 minutes. The chip has been tested using two strains of E. coli and polymyxin B as the model antibiotic. An array of potassium-sensitive ISFETs and their readout circuits are integrated on the CMOS chip and a potassium-sensitive membrane is directly attached to the top metal electrodes, to measure potassium efflux from the affected bacterial cells.

On the nature of chemical bonding in the all-metal aromatic Sb3Au3Sb3(3-) sandwich complex.

In a recent communication, an all-metal aromatic sandwich [Sb3Au3Sb3](3-) was synthesized and characterized. We report herein a density-functional theory (DFT) study on the chemical bonding of this unique cluster, which makes use of a number of computational tools, including the canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP), Wiberg bond index, and orbital composition analyses. The 24-electron, triangular prismatic sandwich is intrinsically electron-deficient, being held to...

A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality s...

A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system w...

50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS...

Passivity of memristor-based BAM neural networks with different memductance and uncertain delays.

This paper addresses the passivity problem for a class of memristor-based bidirectional associate memory (BAM) neural networks with uncertain time-varying delays. In particular, the proposed memristive BAM neural networks is formulated with two different types of memductance functions. By constructing proper Lyapunov-Krasovskii functional and using differential inclusions theory, a new set of sufficient condition is obtained in terms of linear matrix inequalities which guarantee the passivity criteria for t...

CAOS-CMOS camera.

Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital mi...

Targeted capture and resequencing of 1040 genes reveal environmentally driven functional variation in gray wolves.

In an era of ever-increasing amounts of whole genome sequence data for individuals and populations, the utility of traditional single nucleotide polymorphisms (SNPs) array-based genome scans is uncertain. We previously performed a SNP array-based genome scan to identify candidate genes under selection in six distinct gray wolf (Canis lupus) ecotypes. Using this information, we designed a targeted capture array for 1040 genes, including all exons and flanking regions, as well as 5000 1 kb non-genic neutral r...

Benchmarking Density Functional Theory Based Methods to Model NiOOH Material Properties: Hubbard and van der Waals Corrections vs. Hybrid Functionals.

NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straig...

Validation of CE modelling with a contactless conductivity array detector.

Dynamic computer simulation data are compared for the first time with CE data obtained with a laboratory made system comprising an array of 8 contactless conductivity detectors (C(4) Ds). The experimental setup featured a 50 μm I.D. linear polyacrylamide (LPA) coated fused-silica capillary of 70 cm length and a purpose built sequential injection analysis manifold for fluid handling of continuous or discontinuous buffer configurations and sample injection. The LPA coated capillary exhibits a low EOF and the...

Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets.

Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an ...


Quick Search
Advertisement