Advertisement
Advertise here Publish your press releases here Sponsor BioPortfolio
Follow us on Twitter Sign up for daily news and research emails Contributors wanted

Iron Sucrose in Stage 3/4 Kidney Disease

06:41 EDT 24th July 2014 | BioPortfolio

Summary

One of the complications of late stage kidney disease is the development of a low red blood cell count (anaemia/low haemoglobin concentration). The Australian Commonwealth government limits funding of medications (called erythropoietic stimulating agents) to those patients who have already developed anaemia.

There is evidence supporting the beneficial effects of maintaining a higher haemoglobin in these patients. Higher haemoglobin can delay the onset of dialysis and reduce the development of heart enlargement. However, the administration of erythropoietic stimulating agents is not without risk, including a high financial burden, worsening of high blood pressure and a rare complication called pure red cell aplasia.

Previous studies have shown that patients with chronic kidney disease require additional iron to maintain the production of red blood cells. Thus it would be timely to determine if the administration of iron sucrose to these patients can maintain a near normal haemoglobin concentration, without the need to start an erythropoietic stimulating agent and possibly delaying dialysis.

Study Hypothesis: That administration of iron sucrose is superior to standard care in the prevention of anaemia in patients with stage 3 /4 kidney disease.

Description

Eligible patients will be approached. Those who agree to partake in the study will, after enrolment (including informed consent), be randomized to one of 2 groups.

Group A: To receive intravenous iron sucrose to maintain supra-physiological measures of iron status ) Group A will be targeted to have ferritin levels between 300 and 500µg/L and/or a transferrin saturation of between 25 and 50%. Between 100 and 200mg of intravenous iron sucrose will be administered by slow bolus injection one- to two-monthly to achieve these levels.

Oral iron will not be used routinely in this group.

Group B: Will have oral iron therapy if required to maintain ferritin levels between 100 and 150µg/L and/or transferrin saturations >20% but <25%. Patients in Group B who are unable to tolerate oral iron will be administered iron sucrose if necessary to maintain acceptable iron levels.

Patients in Group B will therefore differ from those in Group A (a) through the routine use of iron sucrose and (b) through the maintenance of different ferritin and transferrin saturation levels.

Study Design

Allocation: Randomized, Control: Active Control, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment

Conditions

Kidney Failure

Intervention

Iron sucrose

Location

Central Coast Health
Gosford
New South Wales
Australia
2250

Status

Active, not recruiting

Source

Melbourne Health

Results (where available)

View Results

Links

Clinical Trials [1258 Associated Clinical Trials listed on BioPortfolio]

Safety Efficacy of Iron Sucrose in Children

Comparison of three potential iron sucrose maintenance regimens in pediatric chronic kidney disease patients

Intravenous Iron in Patients With Anemia of Chronic Kidney Disease

The objective of this study is the evaluation of the efficacy and safety of intravenous iron sucrose in anemic patients with chronic kidney disease not on renal replacement therapy.

Heme Iron Polypeptide for Iron Deficiency Anemia in Chronic Renal Failure

The purpose of this study is to determine if oral Heme Iron Polypeptide is as effective as IV iron sucrose in the treatment of iron-deficiency anemia for patients with chronic kidney disea...

Comparison Between Effects of Two Iron Preparations on Protein in the Urine

This study will compare the effects of sodium ferric gluconate complex and iron sucrose on urine concentrations of various chemicals including protein

Bioequivalency Study Comparing Hospira's Generic Iron Sucrose Injection to Venofer

The primary objective of this study is to assess the bioequivalence of the test product Hospira Iron Sucrose 20 mg/mL (Hospira, Inc.) to the reference product Venofer® 20 mg/mL following...

PubMed Articles [8197 Associated PubMed Articles listed on BioPortfolio]

A Phase III, randomized, open-label trial of ferumoxytol compared with iron sucrose for the treatment of iron deficiency anemia in patients with a history of unsatisfactory oral iron therapy.

Iron deficiency anemia (IDA) is the most common form of anemia worldwide. While oral iron is used as first-line treatment, many patients are unresponsive to or cannot take oral iron. This Phase III, o...

Co-Administration of Silymarin and Deferoxamine against Kidney, Liver and Heart Iron Deposition in Male Iron Overload Rat Model.

Tissue iron deposition may disturb functions of the organs. In many diseases like thalassemia, the patients suffer from iron deposition in kidney and heart tissues. Deferoxamine (DF) is a synthetic ir...

Pharmaceutical characterization and thermodynamic stability assessment of a colloidal iron drug product: Iron sucrose.

The study objective was to evaluate the thermodynamic stability of iron sucrose complexes as determined by molecular weight (m.w.) changes. The first part of the study focused on the effect of thermal...

A study to compare the efficacy and safety of intravenous iron sucrose and intramuscular iron sorbitol therapy for anemia during pregnancy.

To compare the efficacy, safety, and rate of response of intravenous iron sucrose and intramuscular iron sorbitol therapy for anemia during pregnancy.

Iron Increases Diabetes-Induced Kidney Injury and Oxidative Stress in Rats.

Diabetic nephropathy is both a common and a severe complication of diabetes mellitus. Iron is an essential trace element. However, excess iron is toxic, playing a role in the pathogenesis of diabetic...

Medical and Biotech [MESH] Definitions

A severe irreversible decline in the ability of kidneys to remove wastes, concentrate URINE, and maintain ELECTROLYTE BALANCE; BLOOD PRESSURE; and CALCIUM metabolism. Renal failure, either acute (KIDNEY FAILURE, ACUTE) or chronic (KIDNEY FAILURE, CHRONIC), requires HEMODIALYSIS.

A complication of kidney diseases characterized by cell death involving KIDNEY PAPILLA in the KIDNEY MEDULLA. Damages to this area may hinder the kidney to concentrate urine resulting in POLYURIA. Sloughed off necrotic tissue may block KIDNEY PELVIS or URETER. Necrosis of multiple renal papillae can lead to KIDNEY FAILURE.

The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION.

Iron or iron compounds used in foods or as food. Dietary iron is important in oxygen transport and the synthesis of the iron-porphyrin proteins hemoglobin, myoglobin, cytochromes, and cytochrome oxidase. Insufficient amounts of dietary iron can lead to iron-deficiency anemia.

Acute kidney failure resulting from destruction of EPITHELIAL CELLS of the KIDNEY TUBULES. It is commonly attributed to exposure to toxic agents or renal ISCHEMIA following severe TRAUMA.

More From BioPortfolio on "Iron Sucrose in Stage 3/4 Kidney Disease"

Search BioPortfolio:

Relevant Topic

Blood · Latest News · Clinical Trials · Research · Drugs · Reports · Corporate
Blood is a specialized bodily fluid that delivers necessary substances to the body's cells (in animals) – such as nutrients and oxygen – and transports waste products away from those same cells.  In vertebrates, it is composed of blo...

Advertisement
Advertisement