Advertisement

Topics

Brain Retraction Monitoring Sensor Study

2014-08-27 03:27:36 | BioPortfolio

Summary

The purpose of this study is to utilize a sensor incorporated into a brain retractor blade to monitor electrical activity and pressure applied to the brain during retraction required for the selected skull base operations. The overall goal of the study is to develop a protocol and guidelines to prevent the development of brain retraction injury during neurosurgical procedures requiring significant retraction.

Description

During neurosurgical operations for aneurysms, tumors, or other lesions located in the skull base, the surgeon must employ retracting devices in order to displace one or more lobes of the brain enough to gain adequate surgical exposure. These retractors are adjusted by hand to optimize exposure. It is often difficult for the surgeon to gauge the amount of pressure actually applied to the brain during such placement of the retractor. Moreover, it is also possible to position the blade of the retractor inadvertently such that a focal pressure point occurs at the tip of the retractor blade against the brain. Thus, injury to the brain can occur as a result of brain retraction when either the force applied is excessive or when the pressure is not adequately distributed to a large enough area of brain. This injury is thought to be the result of ischemia (inadequate blood flow) caused by the retraction, local trauma, or a combination of both. It has been estimated that this type of brain retraction injury occurs in approximately 10% of major cranial base tumor procedures or 5% of intracranial aneurysm surgeries. The specific aim of this research is to identify changes in electrical activity of brain tissue subjected to necessary retraction during neurosurgical procedures that may give forewarning of imminent brain retraction injury. It is anticipated that this information will permit development of guidelines that will enable the neurosurgeon to take steps to minimize such injury, i.e., by temporarily releasing or otherwise modifying the brain retraction. Cerebral electrical activity, together with the amount of retraction pressure being applied, will be recorded directly from the tissue at risk by means of a silastic electrode grid containing a pressure monitor placed on the surface of the cerebral cortex underneath the retractor blade.

Study Design

Control: Active Control, Endpoint Classification: Efficacy Study, Intervention Model: Single Group Assignment, Masking: Single Blind (Outcomes Assessor), Primary Purpose: Prevention

Conditions

Brain Surgery Requiring Significant Retraction of the Brain

Intervention

Brain Retraction Monitoring Sensor

Location

Methodist Hospital
Indianapolis
Indiana
United States
46206

Status

Recruiting

Source

Vanderbilt University

Results (where available)

View Results

Links

Published on BioPortfolio: 2014-08-27T03:27:36-0400

Clinical Trials [3293 Associated Clinical Trials listed on BioPortfolio]

Monitoring Brain Activity in Human Brain Injury

The outcome of brain injury (physical or stroke) may be related to a brain electrical phenomenon known as Cortical Spreading Depression (CSD). This is a brief cessation of function in a l...

Brain Oxygenation Monitoring in Patients Undergoing Coronary Artery Bypass Surgery

The purpose of this study is to determine whether intraoperative brain oxygenation monitoring in cardiac surgery patients is effective in reducing postoperative neurologic and neurocogniti...

Furosemide vs Placebo for Brain Relaxation

Increased brain bulk may be problematic during brain surgery for tumors because it may limit surgical exposure and access to the surgical site. Mannitol, an osmotic diuretic, is commonly ...

Magnetic Resonance Imaging (MRI) to Evaluate Brain Injury in Congenital Heart Disease

Infants with congenital heart disease (CHD) requiring surgery frequently have brain injury seen on magnetic resonance imaging (MRI). This occurs in approximately 40% of these newborns, an...

Analysis of Brain Tumors Using Matrix Assisted Laser Desorption/Ionization Mass Spectrometry

We are collecting brain tissue specimens and blood samples from patients at Vanderbilt University Medical Center who are undergoing intracranial surgery to remove brain tissue, including b...

PubMed Articles [29526 Associated PubMed Articles listed on BioPortfolio]

Retractorless surgery for intracranial aneurysms.

Microsurgical clipping of intracranial aneurysms often requires access to the subarachnoid space deep in the brain. In the past, fixed retractors have been used to maintain the surgical corridor. Howe...

Height of aneurysm neck and estimated extent of brain retraction: powerful predictors of olfactory dysfunction after surgery for unruptured anterior communicating artery aneurysms.

OBJECT The highest incidence of olfactory dysfunction following a pterional approach and its modifications for an intracranial aneurysm has been reported in cases of anterior communicating artery (ACo...

Retractorless surgery for a pineal region tumor through an occipital transtentorial approach.

This video demonstrates surgical techniques of the occipital transtentorial approach to a pineal region tumor without using a fixed brain retractor, which may cause functional impairment or even tissu...

Is Intracranial Pressure Monitoring of Patients With Diffuse Traumatic Brain Injury Valuable? An Observational Multicenter Study.

Although intracranial pressure (ICP) monitoring of patients with severe traumatic brain injury (TBI) is recommended by the Brain Trauma Foundation, any benefits remain controversial.

A Threat to Autonomy? The Intrusion of Predictive Brain Implants.

The world's first-in-human clinical trial using invasive intelligent brain devices-devices that predict specific neuronal events directly to the implanted person-has been completed with significant su...

Medical and Biotech [MESH] Definitions

Tissue NECROSIS in any area of the brain, including the CEREBRAL HEMISPHERES, the CEREBELLUM, and the BRAIN STEM. Brain infarction is the result of a cascade of events initiated by inadequate blood flow through the brain that is followed by HYPOXIA and HYPOGLYCEMIA in brain tissue. Damage may be temporary, permanent, selective or pan-necrosis.

Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION.

Bleeding within the brain as a result of penetrating and nonpenetrating CRANIOCEREBRAL TRAUMA. Traumatically induced hemorrhages may occur in any area of the brain, including the CEREBRUM; BRAIN STEM (see BRAIN STEM HEMORRHAGE, TRAUMATIC); and CEREBELLUM.

Physiologic or biochemical monitoring of the fetus. It is usually done during LABOR, OBSTETRIC and may be performed in conjunction with the monitoring of uterine activity. It may also be performed prenatally as when the mother is undergoing surgery.

A condition characterized by long-standing brain dysfunction or damage, usually of three months duration or longer. Potential etiologies include BRAIN INFARCTION; certain NEURODEGENERATIVE DISORDERS; CRANIOCEREBRAL TRAUMA; ANOXIA, BRAIN; ENCEPHALITIS; certain NEUROTOXICITY SYNDROMES; metabolic disorders (see BRAIN DISEASES, METABOLIC); and other conditions.

More From BioPortfolio on "Brain Retraction Monitoring Sensor Study"

Quick Search
Advertisement
 

Relevant Topic

Alzheimer's Disease
Of all the types of Dementia, Alzheimer's disease is the most common, affecting around 465,000 people in the UK. Neurons in the brain die, becuase  'plaques' and 'tangles' (mis-folded proteins) form in the brain. People with Al...


Searches Linking to this Trial