Non-Invasive Brain Signal Training to Induce Motor Control Recovery After Stroke

10:38 EDT 20th August 2014 | BioPortfolio

Summary

The purpose of this trial is to evaluate the benefits of motor learning, functional electrical stimulation, and brain computer interface training for restoring arm function in people with stroke.

Description

The financial burden and human suffering are devastating after stroke due to the lack of rehabilitation protocols that can restore normal brain and motor function. Conventional treatment does not restore normal motor function to many stroke survivors. The majority of available treatments are directed at the peripheral nervous system (arms/legs). Since stroke occurs in the brain and results in brain damage and dysfunction, a more direct approach may be to re-train the brain by directly treating the activation of brain signals that control movement.

The purposes of this study are to determine if motor learning, functional electrical stimulation (FES), and brain computer interface (BCI) training are beneficial for restoring arm function in people who have had a stroke, and to determine if the surface-acquired brain signal [electroencephalography (EEG)] can be re-trained to provide more normal motor function in stroke survivors. The primary purpose of this study is to determine the efficacy of the motor learning tasks in stroke recovery.

In the study, scientists will use two different and complimentary brain signal training components to restore more normal motor control of a motor task (elbow, wrist, or finger movement task). Specifically targeting, invoking, and training the surface-acquired EEG brain signal, and integrating brain signal training into motor learning training of upper limb motor tasks, may result in greater motor restoration when compared to a comprehensive motor learning intervention without EEG brain signal training.

Thirty six people who have had a stroke will be enrolled in the experimental group. They will receive brain signal training and be assigned to one of three groups: elbow coordination impairment; wrist impairment; or finger coordination impairment. The BCI training will focus on the movement impairment for each group, respectively. Treatment will be 5 hours a day, 5 days a week, for 12 weeks, based on prior established motor learning protocols. A single day—5-hour session—will be composed of the following: up to 1 hour of brain signal training; up to 1.5 hours of FES-assisted movement practice; and up to 2.5 hours of motor learning.

Up to an additional 30 healthy adults will be enrolled in order to study their ability to acquire brain signal control and the characteristics of their brain signal during the tasks that the stroke participants will attempt.

Directly and effectively treating the brain (where the stroke occurred) has the potential to shorten rehabilitation time, reduce therapist/patient ratio, more completely restore motor function, restore motor function to a higher percentage of patients after stroke, and the method may possibly be applicable to other neurological diagnoses.

Study Design

Allocation: Non-Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Factorial Assignment, Masking: Open Label

Conditions

Stroke

Intervention

Surface functional electrical stimulation (FES) assisted movement training, Motor learning, Brain computer interface (BCI) training

Location

Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Mailstop 151-W
Cleveland
Ohio
United States
44106

Status

Recruiting

Source

Louis Stokes VA Medical Center

Results (where available)

View Results

Links

Clinical Trials [1635 Associated Clinical Trials listed on BioPortfolio]

Functional Electrical Stimulation-Assisted Walking: Reduction of Secondary Complications Due to Spinal Cord Injury

The purpose of this study is to evaluate whether an aerobic and resistance training program or a functional electrical stimulation-assisted Walking program is more effective for reducing h...

The Effect of Sacral Surface Electrical Stimulation for Assisted Reproductive Technology

The purpose of this study is to determine whether sacral surface electrical stimulation is effective in the treatment of assisted reproductive technology.

Improving Hand Movement Training Through Electrical Stimulation of the Brain

This study will determine if applying electrical stimulation of the brain can influence training to perform finger movements. The study may provide information that can be used to design r...

Effects of Different Amounts of Electrical Stimulation + Bilateral Practice on Improving Hand Function After Stroke

The purpose of this study is to compare how well providing 2 different amounts of therapy, electrical stimulation to the arm/hand muscles plus bilateral practice using the arms/hands, for...

Control of Unsupported Paraplegic Standing

The study will investigate the feasibility of using functional electrical stimulation (FES) of the calf muscles of paraplegic subjects to assist in posture stabilisation during standing. W...

PubMed Articles [22628 Associated PubMed Articles listed on BioPortfolio]

Electrical Stimulation of Motor Cortex in the Uninjured Hemisphere after Chronic Unilateral Injury Promotes Recovery of Skilled Locomotion through Ipsilateral Control.

Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex aug...

Long-term results of a clinical trial comparing isolated vaginal stimulation with combined treatment for women with stress incontinence.

Objective To determine the efficacy of stress urinary incontinence treatments adding pelvic floor muscle training to vaginal electrical stimulation. Methods Forty-eight women with stress urinary incon...

Sensory electrical stimulation improves foot placement during targeted stepping post-stroke.

Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alte...

Surface Electrical Stimulation for Treating Swallowing Disorders after Stroke: A Review of the Stimulation Intensity Levels and the Electrode Placements.

Neuromuscular electrical stimulation (NMES) for treating dysphagia is a relatively new therapeutic method. There is a paucity of evidence about the use of NMES in patients with dysphagia caused by str...

Effects of surface and intravaginal electrical stimulation in the treatment of women with stress urinary incontinence: randomized controlled trial.

To evaluate the effects of surface electrical stimulation (SES) and to compare them with the effects of the intravaginal electrical stimulation (IVES) in women with stress urinary incontinence (SUI).

Medical and Biotech [MESH] Definitions

The electrical response evoked in a muscle or motor nerve by electrical or magnetic stimulation. Common methods of stimulation are by transcranial electrical and TRANSCRANIAL MAGNETIC STIMULATION. It is often used for monitoring during neurosurgery.

Proteins that are involved in or cause CELL MOVEMENT such as the rotary structures (flagellar motor) or the structures whose movement is directed along cytoskeletal filaments (MYOSIN; KINESIN; and DYNEIN motor families).

Therapy assisted by the use of a horse and/or its movement, including equine-assisted psychotherapy, horseback riding, and hippotherapy.

The recorded electrical responses from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Often used synonymously to event-related potentials which are associated with higher level cognitive processes.

A technique in assisted reproduction (REPRODUCTIVE TECHNIQUES, ASSISTED) consisting of hormonal stimulation of the ovaries, follicular aspiration of preovulatory oocytes, in-vitro fertilization, and intrafallopian transfer of zygotes at the pronuclear stage (before cleavage).

More From BioPortfolio on "Non-Invasive Brain Signal Training to Induce Motor Control Recovery After Stroke"

Search BioPortfolio:
Advertisement

Relevant Topics

Neurology - Central Nervous System (CNS)
Latest News Clinical Trials Research Drugs Reports Corporate
Neurology is the branch of medicine concerned with nerves; both the central nervous system and the peripheral nervous system. This includes strokes and disorders affecting the brain aswell as spinal cord damage and peripheral neuropathies.The complexity...

Women's Health
Latest News Clinical Trials Research Drugs Reports Corporate
Women's Health - key topics include breast cancer, pregnancy, menopause, stroke Follow and track Women's Health News on BioPortfolio: Women's Health News RSS Women'...

Advertisement