Advertisement

Topics

Metabolic vulnerability of cisplatin-resistant cancers

03:46 EDT 14 Jul 2018 | Nature Publishing

Cisplatin is the most widely used chemotherapeutic agent, and resistance of neoplastic cells against this cytoxicant poses a major problem in clinical oncology. Here, we explored potential metabolic vulnerabilities of cisplatin-resistant non-small human cell lung cancer and ovarian cancer cell lines. Cisplatin-resistant clones were more sensitive to killing by nutrient deprivation in vitro and in vivo than their parental cisplatin-sensitive controls. The susceptibility of cisplatin-resistant cells to starvation could be explained by a particularly strong dependence on glutamine. Glutamine depletion was sufficient to restore cisplatin responses of initially cisplatin-resistant clones, and glutamine supplementation rescued cisplatin-resistant clones from starvation-induced death. Mass spectrometric metabolomics and specific interventions on glutamine metabolism revealed that, in cisplatin-resistant cells, glutamine is mostly required for nucleotide biosynthesis rather than for anaplerotic, bioenergetic or redox reactions. As a result, cisplatin-resistant cancers became exquisitely sensitive to treatment with antimetabolites that target nucleoside metabolism.

Original Article: Metabolic vulnerability of cisplatin-resistant cancers

NEXT ARTICLE

More From BioPortfolio on "Metabolic vulnerability of cisplatin-resistant cancers"

Advertisement
Quick Search
Advertisement
Advertisement

 

Relevant Topics

Cancer
  Bladder Cancer Brain Cancer Breast Cancer Cancer Cervical Cancer Colorectal Head & Neck Cancers Hodgkin Lymphoma Leukemia Lung Cancer Melanoma Myeloma Ovarian Cancer Pancreatic Cancer ...

Lung Cancer
Lung cancer is the uncontrolled cell growth in tissues of the lung. Originating in the lungs, this growth may invade adjacent tissues and infiltrate beyond the lungs. Lung cancer, the most common cause of cancer-related death in men and women, is respons...