Advertisement

Topics

Multi-omics identify xanthine as a pro-survival metabolite for nematodes with mitochondrial dysfunction

22:55 EDT 15 Mar 2019 | Nature Publishing

Aberrant mitochondrial function contributes to the pathogenesis of various metabolic and chronic disorders. Inhibition of insulin/IGF-1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Using an unbiased multi-omics approach, we report here that IIS inhibition reduces protein synthesis and favors catabolism in mitochondrial deficient Caenorhabditis elegans. We unveil that the lifespan extension does not occur through the restoration of mitochondrial respiration, but as a consequence of an ATP-saving metabolic rewiring that is associated with an evolutionarily conserved phosphoproteome landscape. Furthermore, we identify xanthine accumulation as a prominent downstream metabolic output of IIS inhibition. We provide evidence that supplementation of FDA-approved xanthine derivatives is sufficient to promote fitness and survival of nematodes carrying mitochondrial lesions. Together, our data describe previously unknown molecular components of a metabolic network that can extend the lifespan of short-lived mitochondrial mutant animals.

Original Article: Multi-omics identify xanthine as a pro-survival metabolite for nematodes with mitochondrial dysfunction

NEXT ARTICLE

More From BioPortfolio on "Multi-omics identify xanthine as a pro-survival metabolite for nematodes with mitochondrial dysfunction"

Advertisement
Quick Search
Advertisement
Advertisement

 

Relevant Topic

Drug Approvals
In order to become availible to pateints, drugs need to undergo a number of phases of clinical trials to test their efficacy and safty and to then be authorised by the drug approval organistion in each respective country. This is the FDA in the USA and N...