Advertisement

Topics

The spacing effect for structural synaptic plasticity provides specificity and precision in plastic changes.

08:00 EDT 21st April 2017 | BioPortfolio

Summary of "The spacing effect for structural synaptic plasticity provides specificity and precision in plastic changes."

In contrast to trials of training without intervals (massed training), training trials spaced over time (spaced training) induce a more persistent memory identified as long-term memory (LTM). This phenomenon known as "the spacing effect for memory" is poorly understood. LTM is supported by structural synaptic plasticity; however, how synapses integrate spaced stimuli remains elusive. Here, we analyzed events of structural synaptic plasticity at the single synapse level after distinct patterns of stimulation in motoneurons of Drosophila We found that the spacing effect is a phenomenon detected at synaptic level, which determine the specificity and the precision in structural synaptic plasticity. Whereas a single pulse of stimulation (massed) induced structural synaptic plasticity, the same amount of stimulation divided in three spaced stimuli completely prevented it. This inhibitory effect was determined by the length of the inter-stimulus intervals. The inhibitory effect of the spacing was lost by suppressing the activity of Ras or MAPK, while the overexpression of Ras-WT enhanced it. Moreover, dividing the same total time of stimulation into five or more stimuli produced a higher precision in the number of events of plasticity. Ras mutations associated with intellectual disability abolish the spacing effect and made that neurons decoded distinct stimulation patterns as massed stimulation. This evidence suggests that the spacing effect for memory may results from the effect of the spacing in synaptic plasticity, which appear to be a property not limited to neurons involved in learning and memory. We propose a model of spacing-dependent structural synaptic plasticity.SIGNIFICANCE STATEMENTLong-term memory (LTM) induced by repeated trials spaced over time is known as the spacing effect, a common property in the animal kingdom. Altered mechanisms in the spacing effect have been found in animal models of disorders with intellectual disability, such as Noonan syndrome. Although LTM is sustained by structural synaptic plasticity, how synapses integrate spaced stimuli and decode them into specific plastic changes remains elusive. Here, we show that the spacing effect is a phenomenon detected at synaptic level, which determines the properties of the response in structural plasticity, including precision of such response. Whereas suppressing or enhancing Ras/MAPK signaling changed how synapses decode a pattern of stimuli, a disease-related Ras allele abolished the spacing effect for plastic changes.

Affiliation

Journal Details

This article was published in the following journal.

Name: The Journal of neuroscience : the official journal of the Society for Neuroscience
ISSN: 1529-2401
Pages:

Links

DeepDyve research library

PubMed Articles [18759 Associated PubMed Articles listed on BioPortfolio]

Presynaptic morphogenesis, active zone organization and structural plasticity in Drosophila.

Effective adaptation of neural circuit function to a changing environment requires many forms of plasticity. Among these, structural plasticity is one of the most durable, and is also an intrinsic par...

Biophysics of Biochemical Signaling in Dendritic Spines: Implications in Synaptic Plasticity.

Dendritic spines are mushroom-shaped postsynaptic compartments that host biochemical signal cascades important for synaptic plasticity and, ultimately, learning and memory. Signaling events in spines ...

Modulation of Autophagy by BDNF Underlies Synaptic Plasticity.

Autophagy is crucial for neuronal integrity. Loss of key autophagic components leads to progressive neurodegeneration and structural defects in pre- and postsynaptic morphologies. However, the molecul...

Regulation of Rho GTPase proteins during spine structural plasticity for the control of local dendritic plasticity.

While it is generally appreciated that learning involves the structural rearrangement of neuronal circuits, the underlying orchestration of molecular events that drives these changes is not as well un...

Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plastic...

Clinical Trials [2507 Associated Clinical Trials listed on BioPortfolio]

Split Scar Study to Assess Cosmetic Outcome From Differing Suture Spacing

The investigators wish to determine how suture spacing (5 mm vs. 10 mm) affects cosmetic outcome and development of "train tracking" in wounds. Linear wounds with sutures spaced closer tog...

D-aspartate and Therapeutic Exercise

An important mechanism responsible for clinical recovery after neurological damage of different types is synaptic plasticity. Nervous tissue can enhance or de-energize inter-neuronal trans...

Effect of Spacing of Anti-TNF Drugs in Ankylosing Spondylitis With Low Disease Activity

Patients with spondyloarthritis, already treated by TNF blocker (adalimumab, etanercept or infliximab), and in stable low disease activity for at least 6 months, will be randomized into 2 ...

Mechanisms of Auto-immune Encephalitis

Neurological and psychiatric diseases are one of the major health problems worldwide. Decades of fundamental and clinical research have led to the model that these disorders results from s...

The Effect of Exercise on Strength and Mobility and Corresponding CNS Plasticity in Multiple Sclerosis Patients

This study is a unique blend of new technologies never used in combination with individuals diagnosed with Multiple Sclerosis (MS). The results of this research will define changes in bra...

Medical and Biotech [MESH] Definitions

Cytoskeleton specialization at the cytoplasmic side of postsynaptic membrane in SYNAPSES. It is involved in neuronal signaling and NEURONAL PLASTICITY and comprised of GLUTAMATE RECEPTORS; scaffolding molecules (e.g., PSD95, PSD93), and other proteins (e.g., CaCMKII).

The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES.

Metal devices for fastening together two or more parts of dental prostheses for stabilizing or retaining them by attachment to abutment teeth. For a precision attachment for a partial denture DENTURE PRECISION ATTACHMENT is available.

Serine/threonine protein kinase responsible for various SKELETAL MUSCLE functions; HEART CONDUCTION SYSTEM activity; calcium HOMEOSTASIS; calcium uptake by SARCOPLASMIC RETICULUM and SYNAPTIC PLASTICITY. It is encoded by the DMPK gene and its abnormal EXPANDED TRINUCLEOTIDE REPEAT of CTG in the 3'-UTR is associated with MYOTONIC DYSTROPHY 1.

Functional proteins that do not have unique, stable, folded, three-dimensional native structures or that possess non-ordered regions under physiological conditions. They are characterized by extraordinary structural flexibility and plasticity, which enable them to adopt different conformations in response to different stimuli or different interactions.

Quick Search
Advertisement
 


DeepDyve research library

Searches Linking to this Article