Advertisement

Topics

Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering.

08:00 EDT 27th September 2017 | BioPortfolio

Summary of "Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering."

Salt-resistant yeast strains are highly demanded by industry due to the exposure of yeast cells to high concetrations of salt, in various industrial bioprocesses. The aim of this study was to perform a physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae (S. cerevisiae) mutant generated by evolutionary engineering. NaCl-resistant S. cerevisiae strains were obtained by ethyl methane sulfonate (EMS) mutagenesis followed by successive batch cultivations in the presence of gradually increasing NaCl concentrations, up to 8.5% w/v of NaCl (1.45 M). The most probable number (MPN) method, high-performance liquid chromatography (HPLC), and glucose oxidase/peroxidase method were used for physiological analysis, while Agilent yeast DNA microarray systems were used for transcriptome analysis. NaCl-resistant mutant strain T8 was highly cross-resistant to LiCl and highly sensitive to AlCl3. In the absence of NaCl stress, T8 strain had significantly higher trehalose and glycogen levels compared to the reference strain. Global transcriptome analysis by means of DNA microarrays showed that the genes related to stress response, carbohydrate transport, glycogen and trehalose biosynthesis, as well as biofilm formation, were upregulated. According to gene set enrichment analysis, 548 genes were upregulated and 22 downregulated in T8 strain, compared to the reference strain. Among the 548 upregulated genes, the highest upregulation was observed for the FLO11 (MUC1) gene (92-fold that of the reference strain). Overall, evolutionary engineering by chemical mutagenesis and increasing NaCl concentrations is a promising approach in developing industrial strains for biotechnological applications.

Affiliation

Journal Details

This article was published in the following journal.

Name: Bosnian journal of basic medical sciences
ISSN: 1840-4812
Pages:

Links

DeepDyve research library

PubMed Articles [21497 Associated PubMed Articles listed on BioPortfolio]

RNA-Seq analysis of global transcriptomic changes suggests a role for the MAPK pathway and carbon metabolism in cell wall maintenance in a Saccharomyces cerevisiae FKS1 mutant.

FKS1 encodes a β-1,3-glucan synthase, which is a key player in cell wall assembly in Saccharomyces cerevisiae. Here we analyzed the global transcriptomic changes in the FKS1 mutant to establish a cor...

Physiological and Transcriptomic Analysis of a Chronologically Long-Lived Saccharomyces cerevisiae Strain Obtained by Evolutionary Engineering.

High-throughput aging studies with yeast as a model organism involve transposon-mutagenesis and yeast knockout collection, which have been pivotal strategies for understanding the complex cellular agi...

New rapid PCR protocol based on High-Resolution Melting analysis (HRMA) to identify Saccharomyces cerevisiae and other species within its genus.

Selection projects aiming at the identification of new Saccharomyces strains are always on going as the use of the suitable yeast can strongly improve fermented food production, particularly winemakin...

Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase.

To efficiently ferment intermediate cellodextrins released during cellulose hydrolysis, Saccharomyces cerevisiae has been engineered by introduction of a heterologous cellodextrin utilizing pathway co...

SaccharomycesIDentifier, SID: strain-level analysis of Saccharomyces cerevisiae populations by using microsatellite meta-patterns.

Saccharomyces cerevisiae is a common yeast with several applications, among which the most ancient is winemaking. Because individuals belonging to this species show a wide genetic and phenotypic varia...

Clinical Trials [4641 Associated Clinical Trials listed on BioPortfolio]

A Pilot Trial of the Immunogenicity, and Safety of GI-4000; an Inactivated Recombinant Saccharomyces Cerevisiae Expressing Mutant Ras Protein, as Consolidation Therapy Following Curative Treatment for Stage I-III Non-Small Cell Lung Cancer (NSCLC) With Tu

This is a consolidation therapy trial evaluating GI-4000 in subjects with NSCLC treated with curative intent who are disease free at their first post-treatment restaging assessment.

Vascular Effects of Dietary Salt in Humans With Salt-Resistant Blood Pressure

The purpose of this study is to determine the effects of dietary salt restriction on central hemodynamics and vascular function in men and women with salt resistant blood pressure.

Analysis of Transcriptomic Profile of Graft-versus-host Disease (GHVD) After Allogeneic Grafting of Hematopoietic Stem Cells

Graft-versus-host disease (GVHD) is a frequent and severe complication of hematopoietic stem cell transplantation (HSC), and is responsible for significant early mortality despite prophyla...

Skin Tape Harvesting for Transcriptomics Analysis

Transcriptomics is the study of how RNA is expressed under specific conditions. Transcriptomic analyses of lesional skin biopsies can be a useful way to track how a patient responds to a d...

Safety and Immunogenicity of Recombinant Hepatitis B Vaccines in the Neonates

The purpose of this study is to further evaluate the immunogenicity and safety of 10μg/0.5ml Recombinant Hepatitis B Vaccines(Saccharomyces Cerevisiae) in the Healthy Neonates.

Medical and Biotech [MESH] Definitions

A member of the Rho family of MONOMERIC GTP-BINDING PROTEINS from SACCHAROMYCES CEREVISIAE. It is involved in morphological events related to the cell cycle. This enzyme was formerly listed as EC 3.6.1.47.

Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.

A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.

A set of nuclear proteins in SACCHAROMYCES CEREVISIAE that are required for the transcriptional repression of the silent mating type loci. They mediate the formation of silenced CHROMATIN and repress both transcription and recombination at other loci as well. They are comprised of 4 non-homologous, interacting proteins, Sir1p, Sir2p, Sir3p, and Sir4p. Sir2p, an NAD-dependent HISTONE DEACETYLASE, is the founding member of the family of SIRTUINS.

A protein kinase encoded by the Saccharomyces cerevisiae CDC28 gene and required for progression from the G1 PHASE to the S PHASE in the CELL CYCLE.

Advertisement
Quick Search
Advertisement
Advertisement

 


DeepDyve research library

Relevant Topics

Bioinformatics
Bioinformatics is the application of computer software and hardware to the management of biological data to create useful information. Computers are used to gather, store, analyze and integrate biological and genetic information which can then be applied...

DNA Microarray
A DNA microarray or biochip is a collection of microscopic DNA spots attached to a solid surface used to measure the expression levels of large numbers of genes simultaneously or to genotype multiple regions of a genome.

Stress
Stress is caused by your perception of situations around you and then the reaction of your body to them. The automatic stress response to unexpected events is known as 'fight or flight'. Discovered by Walter Cannon in 1932, it is the release of h...


Searches Linking to this Article