Phase imaging and nanoscale energy dissipation of supported graphene using amplitude modulation atomic force microscopy.

08:00 EDT 23rd October 2017 | BioPortfolio

Summary of "Phase imaging and nanoscale energy dissipation of supported graphene using amplitude modulation atomic force microscopy."

We investigate the phase imaging of supported graphene using amplitude modulation atomic force microscopy (AFM), the so-called tapping mode. The phase contrast between graphene and the neighboring substrate grows in hard tapping conditions and the contrast is enhanced compared to the topographic one. Therefore, phase measurements could enable the high-contrast imaging of graphene and related two-dimensional materials and heterostructures, which is not achievable with conventional AFM based topographic measurements. Obtained phase maps are then transformed into energy dissipation maps, which are important for graphene applications in various nano-mechanical systems. From a fundamental point of view, energy dissipation gives further insight into mechanical properties. Reliable measurements, obtained in the repulsive regime, show that the energy dissipation on a graphene-covered substrate is lower than that on a bare one, so graphene provides certain shielding in tip-substrate interaction. Based on the obtained phase curves and their derivatives, as well as on correlation measurements based on AFM nanoindentation and force modulation microscopy, we conclude that the main dissipation channels in graphene-substrate systems are short-range hysteresis and long-range interfacial forces.


Journal Details

This article was published in the following journal.

Name: Nanotechnology
ISSN: 1361-6528
Pages: 465708


DeepDyve research library

PubMed Articles [18849 Associated PubMed Articles listed on BioPortfolio]

Thermal Transport in Supported Graphene Nanomesh.

Graphene is considered as a promising candidate material to replace silicon for the next generation nanoelectronics due to its superb carrier mobility. To evaluate its thermal dissipation capability a...

Measuring and Manipulating the Adhesion of Graphene.

We present a technique to precisely measure the surface energies between two dimensional materials and substrates that is simple to implement and allows exploration of spatial and chemical control of ...

Energy dissipation mapping of cancer cells.

The purpose of this study is to map the energy dissipation of Jurkat cells using a single 60 nanosecond pulse electric field (NsPEF), primarily through atomic force microscopy (AFM). The phase shift i...

Probing plasma fluorinated graphene via spectromicroscopy.

Plasma fluorination of graphene is studied using a combination of spectroscopy and microscopy techniques, giving insight into the yield and fluorination mechanism for functionalization of supported gr...

Optical imaging and spectroscopic characterization of self-assembled environmental adsorbates on graphene.

Topographic studies using scanning probes have found that graphene surfaces are often covered by micron-scale domains of periodic stripes with a 4 nm pitch. These stripes have been variously interpret...

Clinical Trials [6433 Associated Clinical Trials listed on BioPortfolio]

Trial of Supported Employment Versus USES Supported Employment

The purpose of this study is to test the effectiveness of USES, a strengths-based enhancement to supported employment (SE), as compared to supported employment alone.

BRown Fat Activity Measurement With Infrared imaginG tHermography andThermogenesis - the BRIGHT Study

The whole body calorimeter is sensitive enough to reliably measure cold-induced thermogenesis as a surrogate marker of brown adipose tissue (BAT) activation. The infrared (IR) energy flux...

Intervention Study of Cost-Offset Community Supported Agriculture (CO-CSA)

The purpose of this study is to better understand how participation in cost-subsidized community supported agriculture programs paired with tailored education can affect diet quality and e...

Study of the Effects of Temperature on Metabolism in Human Muscle

This study will examine the role of temperature in changing energy metabolism in human muscle. In order to do this, researchers will use magnetic resonance imaging (MRI) to provide inform...

Evaluation of Diagnostic Accuracy of Contrast Enhanced Dual Energy Mammography Imaging in Comparison to CE-MRI

Clinical study to evaluate diagnostic accuracy of low dose contrast enhanced dual energy mammography imaging (CEDEM+PRIME) in comparison with CE-MRI The primary objective of this clinical ...

Medical and Biotech [MESH] Definitions

Rate of energy dissipation along the path of charged particles. In radiobiology and health physics, exposure is measured in kiloelectron volts per micrometer of tissue (keV/micrometer T).

Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix.

The use of molecularly targeted imaging probes to localize and/or monitor biochemical and cellular processes via various imaging modalities that include RADIONUCLIDE IMAGING; ULTRASONOGRAPHY; MAGNETIC RESONANCE IMAGING; fluorescence imaging; and MICROSCOPY.

Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging.

The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).

Quick Search


DeepDyve research library

Searches Linking to this Article