Advertisement

Topics

Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation.

07:00 EST 21st November 2017 | BioPortfolio

Summary of "Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation."

A comparative metabolomic analysis was conducted on recombinant Saccharomyces cerevisiae strain producing β-carotene and the parent strain cultivated with glucose as carbon source using gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography-mass spectrometry (HPLC-MS) and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based approach. The results showed that most of the central intermediates associated with amino acids, carbohydrates, glycolysis and TCA cycle intermediates (acetic acid, glycerol, citric acid, pyruvic acid and succinic acid), fatty acids, ergosterol and energy metabolites were produced in a lower amount in recombinant strain, as compared to the parent strain. To increase β-carotene production in recombinant strain, a strategy that exogenous addition of acetate (10 g/l) in exponential phase was developed, which could enhance most intracellular metabolites levels and result in 39.3% and 14.2% improvement of β-carotene concentration and production, respectively, which was accompanied by the enhancement of acetyl-CoA, fatty acids, ergosterol and ATP contents in cells. These results indicated that the amounts of intracellular metabolites in engineered strain are largely consumed by carotenoid formation. Therefore, maintaining intracellular metabolites pool at normal levels is essential for carotenoid biosynthesis. To relieve this limitation, rational supplementation of acetate could be a potential way because it can partially restore the levels of intracellular metabolites and improve the production of carotenoid compounds in recombinant S. cerevisiae.

Affiliation

Journal Details

This article was published in the following journal.

Name: PloS one
ISSN: 1932-6203
Pages: e0188385

Links

DeepDyve research library

PubMed Articles [12164 Associated PubMed Articles listed on BioPortfolio]

Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.

Utilization of renewable feedstocks for the production of bio-based bulk chemicals, such as 2,3-butanediol (2,3-BDO), by engineered strains of the non-pathogenic yeast, Saccharomyces cerevisiae, has r...

Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains.

A co-culture platform for bioethanol production from brown macroalgae was developed, consisting of two types of engineered Saccharomyces cerevisiae strains; alginate- and mannitol-assimilating yeast (...

Cell Surface Display of MerR on Saccharomyces cerevisiae for Biosorption of Mercury.

The metalloregulatory protein MerR which plays important roles in mer operon system exhibits high affinity and selectivity toward mercury (II) (Hg(2+)). In order to improve the adsorption ability of S...

Secretory overexpression of Bacillus thermocatenulatus lipase in Saccharomyces cerevisiae using combinatorial library strategy.

Simple and cost-effective lipase expression host microorganisms are highly desirable. A combinatorial library strategy was used to improve the secretory expression of lipase from Bacillus thermocatenu...

Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase.

To efficiently ferment intermediate cellodextrins released during cellulose hydrolysis, Saccharomyces cerevisiae has been engineered by introduction of a heterologous cellodextrin utilizing pathway co...

Clinical Trials [3932 Associated Clinical Trials listed on BioPortfolio]

A Pilot Trial of the Immunogenicity, and Safety of GI-4000; an Inactivated Recombinant Saccharomyces Cerevisiae Expressing Mutant Ras Protein, as Consolidation Therapy Following Curative Treatment for Stage I-III Non-Small Cell Lung Cancer (NSCLC) With Tu

This is a consolidation therapy trial evaluating GI-4000 in subjects with NSCLC treated with curative intent who are disease free at their first post-treatment restaging assessment.

Exploratory Study of Relationships Between Malodor and Urine Metabolomics

The purpose of this study is to identify metabolic signatures associated with malodor conditions. The investigators will perform state-of-the art metabolomics tests and bioinformatic data ...

Safety and Immunogenicity of Recombinant Hepatitis B Vaccines in the Neonates

The purpose of this study is to further evaluate the immunogenicity and safety of 10μg/0.5ml Recombinant Hepatitis B Vaccines(Saccharomyces Cerevisiae) in the Healthy Neonates.

Presence of IBD Specific Antibodies (ASCA, ALCA, ACCA, AMCA) in the Sera of Patients With Spondyloarthropathy

A relationship between IBD and spondyloarthropathy is well recognized. ASCA ( anti saccharomyces cerevisiae antibodies)are considered to be a serological marker for Crohn's disease and hav...

Mycobiome Evaluation in Children With Autism & GI Symptoms

This study's primary aim is to explore the potential differences in the gut mycobiome of children with autism spectrum disorder compared to otherwise healthy children. The secondary object...

Medical and Biotech [MESH] Definitions

A member of the Rho family of MONOMERIC GTP-BINDING PROTEINS from SACCHAROMYCES CEREVISIAE. It is involved in morphological events related to the cell cycle. This enzyme was formerly listed as EC 3.6.1.47.

Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.

A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.

A set of nuclear proteins in SACCHAROMYCES CEREVISIAE that are required for the transcriptional repression of the silent mating type loci. They mediate the formation of silenced CHROMATIN and repress both transcription and recombination at other loci as well. They are comprised of 4 non-homologous, interacting proteins, Sir1p, Sir2p, Sir3p, and Sir4p. Sir2p, an NAD-dependent HISTONE DEACETYLASE, is the founding member of the family of SIRTUINS.

A protein kinase encoded by the Saccharomyces cerevisiae CDC28 gene and required for progression from the G1 PHASE to the S PHASE in the CELL CYCLE.

Advertisement
Quick Search
Advertisement
Advertisement

 


DeepDyve research library

Relevant Topics

Recombinant DNA
Recombinant DNA is the formation of a novel DNA sequence by the formation of two DNA strands. These are taken from two different organisms. These recombinant DNA molecules can be made with recombinant DNA technology. The procedure is to cut the DNA of ...

Nutrition
Within medicine, nutrition (the study of food and the effect of its components on the body) has many different roles. Appropriate nutrition can help prevent certain diseases, or treat others. In critically ill patients, artificial feeding by tubes need t...


Searches Linking to this Article