Advertisement

Topics

Machine Learning Takes on Health Care: Leonard D'Avolio's Cyft Employs Big Data to Benefit Patients and Providers.

07:03 LMT 1st January 0000 | BioPortfolio

Summary of "Machine Learning Takes on Health Care: Leonard D'Avolio's Cyft Employs Big Data to Benefit Patients and Providers."

When Leonard D'Avolio (Figure 1) was working on his Ph.D. degree in biomedical informatics, he saw the power of machine learning in transforming multiple industries; health care, however, was not among them. "The reason that Amazon, Netflix, and Google have transformed their industries is because they have embedded learning throughout every aspect of what they do. If we could prove that is possible in health care too, I thought we would have the potential to have a huge impact," he says.

Affiliation

Journal Details

This article was published in the following journal.

Name: IEEE pulse
ISSN: 2154-2317
Pages: 10-11

Links

DeepDyve research library

PubMed Articles [24393 Associated PubMed Articles listed on BioPortfolio]

Is It Ethical to Use Prognostic Estimates from Machine Learning to Treat Psychosis?

Machine learning is a method for predicting clinically relevant variables, such as opportunities for early intervention, potential treatment response, prognosis, and health outcomes. This commentary e...

Overachieving municipalities in public health: a machine-learning approach.

Identifying successful public health ideas and practices is a difficult challenge due to the presence of complex baseline characteristics that can affect health outcomes. We propose the use of machine...

Machine Learning Methods for Identifying Critical Data Elements in Nursing Documentation.

Public health nurses (PHNs) engage in home visiting services and documentation of care services for at-risk clients. To increase efficiency and decrease documentation burden, it would be useful for PH...

Implementing Machine Learning in Health Care - Addressing Ethical Challenges.

Use of machine learning to predict early biochemical recurrence following robotic prostatectomy.

To train and compare machine learning algorithms to traditional regression analysis for the prediction of early biochemical recurrence following robotic prostatectomy. Machine learning allows for the ...

Clinical Trials [10039 Associated Clinical Trials listed on BioPortfolio]

Subpopulation-Specific Sepsis Identification Using Machine Learning

The investigators propose to develop and evaluate a hospital department-specific machine learning based clinical decision support (CDS) system for early sepsis prediction, focused on impro...

Machine Learning for Handheld Vascular Studies

The use of handheld arterial 'stethoscopes' (continuous wave Doppler devices) are ubiquitous in clinical practice. However, most users have received no formal training in their use or the ...

Machine Learning From Fetal Flow Waveforms to Predict Adverse Perinatal Outcomes

The aim of this study is to get a proof of concept for using a computational model of fetal haemodynamics, combined with machine learning based on Doppler patterns of the fetal cardiovascu...

Machine-learning Optimization for Prostate Brachytherapy Planning

The proposed, mono-institutional, randomized-controlled trial aims to determine whether the dosimetric outcomes following prostate Low-Dose-Rate (LDR) brachytherapy, planned using a novel ...

Peer Learning and HBB in Managing Maternal Newborn and Child Health Emergencies in Rural Uganda

The aim of this study is to test an intervention that has potential to improve acute care skills and confidence related to safe delivery and newborn care for mid-level health providers in ...

Medical and Biotech [MESH] Definitions

A MACHINE LEARNING paradigm used to make predictions about future instances based on a given set of labeled paired input-output training (sample) data.

A MACHINE LEARNING paradigm used to make predictions about future instances based on a given set of unlabeled paired input-output training (sample) data.

SUPERVISED MACHINE LEARNING algorithm which learns to assign labels to objects from a set of training examples. Examples are learning to recognize fraudulent credit card activity by examining hundreds or thousands of fraudulent and non-fraudulent credit card activity, or learning to make disease diagnosis or prognosis based on automatic classification of microarray gene expression profiles drawn from hundreds or thousands of samples.

A type of ARTIFICIAL INTELLIGENCE that enable COMPUTERS to independently initiate and execute LEARNING when exposed to new data.

Nurses whose work combines elements of both primary care nursing and public health practice and takes place primarily outside the therapeutic institution. Primary nursing care is directed to individuals, families, or groups in their natural settings within communities.

Advertisement
Quick Search
Advertisement
Advertisement

 


DeepDyve research library

Searches Linking to this Article