The lifespan trajectory of neural oscillatory activity in the motor system.

07:00 EST 2nd March 2018 | BioPortfolio

Summary of "The lifespan trajectory of neural oscillatory activity in the motor system."

Numerous studies connect beta oscillations in the motor cortices to volitional movement, and beta is known to be aberrant in multiple movement disorders. However, the dynamic interplay between these beta oscillations, motor performance, and spontaneous beta power (e.g., during rest) in the motor cortices remains unknown. This study utilized magnetoencephalography (MEG) to investigate these three parameters and their lifespan trajectory in 57 healthy participants aged 9-75 years old. Movement-related beta activity was imaged using a beamforming approach, and voxel time series data were extracted from the peak voxels in the primary motor cortices. Our results indicated that spontaneous beta power during rest followed a quadratic lifespan trajectory, while movement-related beta oscillations linearly increased with age. Follow-on analyses showed that spontaneous beta power and the beta minima during movement, together, significantly predicted task performance above and beyond the effects of age. These data are the first to show lifespan trajectories among measures of beta activity in the motor cortices, and suggest that the healthy brain compensates for age-related increases in spontaneous beta activity by increasing the strength of beta oscillations within the motor cortices which, when successful, enables normal motor performance into later life.


Journal Details

This article was published in the following journal.

Name: Developmental cognitive neuroscience
ISSN: 1878-9307
Pages: 159-168


DeepDyve research library

PubMed Articles [22946 Associated PubMed Articles listed on BioPortfolio]

Modulation of motor learning capacity by transcranial alternating current stimulation.

Motor function can be modulated by transcranial alternating current stimulation (tACS) in alpha, beta, and high-gamma frequencies. However, few studies have investigated tACS-induced behavioral change...

Patterned low frequency deep brain stimulation induces motor deficits and modulates cortex-basal ganglia neural activity in healthy rats.

Deep brain stimulation (DBS) is an effective therapy for movement disorders including Parkinson's disease (PD), although the mechanisms of action remain unclear. Abnormal oscillatory neural activity i...

Implicit visual cues tune oscillatory motor activity during decision-making.

Motor decisions entails a buildup of choice-selective activity in the motor cortex. The rate of this buildup crucially depends on the amount of evidence favoring the selection of each action choice in...

Significance and Translational Value of High-Frequency Cortico-Basal Ganglia Oscillations in Parkinson's Disease.

The mechanisms and significance of basal ganglia oscillations is a fundamental research question engaging both clinical and basic investigators. In Parkinson's disease (PD), neural activity in basal g...

Emergent coordination with a brain-machine interface: implications for the neural basis of motor learning.

How patterns of covariance in motor output and neural activity emerge over the course of learning is a topic of ongoing investigation. Vaidya et al. (J Neurophysiol 119: 1291-1304, 2018) investigate t...

Clinical Trials [8765 Associated Clinical Trials listed on BioPortfolio]

State Dependent Resonance in the BG-cortical Loops

Neuronal activity in circuits between the basal ganglia (BG) and motor cortical areas is abnormally synchronized and rhythmic. The oscillatory activity prevails at 8-30 Hz in untreated Par...

Neural and Kinematic Features of Freezing of Gait for Adaptive Neurostimulation

Continuous deep brain stimulation (cDBS) is an established therapy for the major motor signs in Parkinson's disease, however some patients find that it does not adequately treat their free...

Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System

This is a single-cohort early feasibility trial to determine whether an investigational device called the Bidirectional Neural Bypass System can lead to the restoration of movement and sen...

Pathophysiology of Neuronal Oscillations Within Subthalamo-cortical Loops in Parkinson's Disease

Neuronal activity in circuits between the basal ganglia (BG) and motor cortical areas is abnormally synchronised and rhythmic. The oscillatory activity prevails at 8-30 Hz in untreated Par...

Scalar Closed Loop Intraoperative Study

The purpose of this study is to measure neural activity during deep brain stimulation (DBS). There are two types of neural activity that we will record from DBS electrodes during this stud...

Medical and Biotech [MESH] Definitions

Two ganglionated neural plexuses in the gut wall which form one of the three major divisions of the autonomic nervous system. The enteric nervous system innervates the gastrointestinal tract, the pancreas, and the gallbladder. It contains sensory neurons, interneurons, and motor neurons. Thus the circuitry can autonomously sense the tension and the chemical environment in the gut and regulate blood vessel tone, motility, secretions, and fluid transport. The system is itself governed by the central nervous system and receives both parasympathetic and sympathetic innervation. (From Kandel, Schwartz, and Jessel, Principles of Neural Science, 3d ed, p766)

The neural systems which act on VASCULAR SMOOTH MUSCLE to control blood vessel diameter. The major neural control is through the sympathetic nervous system.

The region in the dorsal ECTODERM of a chordate embryo that gives rise to the future CENTRAL NERVOUS SYSTEM. Tissue in the neural plate is called the neuroectoderm, often used as a synonym of neural plate.

The two longitudinal ridges along the PRIMITIVE STREAK appearing near the end of GASTRULATION during development of nervous system (NEURULATION). The ridges are formed by folding of NEURAL PLATE. Between the ridges is a neural groove which deepens as the fold become elevated. When the folds meet at midline, the groove becomes a closed tube, the NEURAL TUBE.

Mild or moderate loss of motor function accompanied by spasticity in the lower extremities. This condition is a manifestation of CENTRAL NERVOUS SYSTEM DISEASES that cause injury to the motor cortex or descending motor pathways.

Quick Search


DeepDyve research library

Searches Linking to this Article