Efficacy of activated persulfate in inactivating Escherichia coli O157:H7 and Listeria monocytogenes.

08:00 EDT 2nd July 2018 | BioPortfolio

Summary of "Efficacy of activated persulfate in inactivating Escherichia coli O157:H7 and Listeria monocytogenes."

Concerns have been on the rise regarding the use of chlorine-based sanitizers for fresh produce sanitation due to the production of toxic disinfection by-products (DBPs). This study was undertaken to evaluate the efficacy of activated persulfate in inactivating Escherichia coli O157:H7 and Listeria monocytogenes in pure culture. The objectives were to study the effect of persulfate to activator ratios and determine the major contributing radical in pathogen inactivation. A five-strain cocktail of each pathogen was treated with sodium persulfate activated by ferrous sulfate or sodium hydroxide for 60 s or 120 s. Non-selective agars supplemented with sodium pyruvate were used for pathogen enumeration. The steady-state concentrations of free radicals were quantified using HPLC-DAD. Radical scavengers (tert-butanol, isopropanol, and benzoquinone) were used to determine the major contributing radical in pathogen inactivation. The results showed more than 7 log CFU/mL reductions can be achieved in 120 s for both pathogens at appropriate activation conditions. For ferrous activation, the persulfate to ferrous ratio played an important role in the overall inactivation efficacy. The maximum pathogen reduction (7.77 log CFU/mL for E. coli O157:H7 and 7.25 log CFU/mL for L. monocytogenes) was achieved at persulfate to ferrous molar ratio of 1:0.33 when the initial persulfate concentration was set at 40 mmol/L. Further increase or decrease of ferrous ratio always leads to lower pathogen reductions. For alkaline activation, the inactivation efficacy increased with more initial sodium hydroxide. The maximum reduction was achieved at 40 mmol/L persulfate with 30 mmol/L sodium hydroxide for E. coli O157:H7 (6.21 log CFU/mL reduction) and at 500 mmol/L persulfate with 350 mmol/L sodium hydroxide for L. monocytogenes (8.64 log CFU/mL reduction). Also, persulfate activated by sodium hydroxide always achieved significantly (P < 0.05) higher microbial reductions than sodium hydroxide or persulfate alone. L. monocytogenes was generally more resistant against the activated persulfate treatment compared with E. coli O157:H7, which might be due to the different cell envelop structures between Gram-positive and Gram-negative bacteria. Hydroxyl radical was demonstrated to be the major radical to inactivate both pathogens in ferrous activation while superoxide radical was demonstrated to be the major radical to inactivate both pathogens in alkaline activation.


Journal Details

This article was published in the following journal.

Name: International journal of food microbiology
ISSN: 1879-3460
Pages: 40-47


DeepDyve research library

PubMed Articles [10690 Associated PubMed Articles listed on BioPortfolio]

Effect of gamma irradiation on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes on pistachios.

This study evaluated the efficacy of gamma irradiation to inactivate foodborne pathogens on pistachios (Pistacia vera L.). Pistachios inoculated with Escherichia coli O157:H7, Salmonella Typhimurium a...

Rapid detection of Escherichia coli O157:H7 by a fluorescent microsphere-based immunochromatographic assay and immunomagnetic separation.

To ensure food safety and avoid infections by Escherichia coli O157:H7 (E. coli O157:H7), we developed a novel fluorescent microsphere (FM)-based immunochromatography assay (FM-ICA). FMs were conjugat...

An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags.

We report here cadmium sulfide quantum dots (CdS QDs)-encapsulated metal-organic frameworks as signal-amplifying tags for ultrasensitive electrochemical detection of Escherichia coli O157:H7 (E. coli ...

Susceptibility of Escherichia coli O157:H7 to Disinfectants In Vitro and in Simulated Footbaths Amended with Manure.

Escherichia coli O157:H7 is a human pathogen associated with gastrointestinal disease and hemolytic uremic syndrome. Direct contact with ruminants and their feces at agritourism or livestock interacti...

A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157:H7 using Au@Pt and graphene.

Herein, a non-enzymatic sandwich-type electrochemical immunoassay was fabricated for quantitative monitoring of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated FeO magnetic nanoparticles (Fe...

Clinical Trials [803 Associated Clinical Trials listed on BioPortfolio]

Enteropathogenic Escherichia Coli (EPEC): Does it Have a Role in Colorectal Tumourigenesis?

Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to...

Epidemiology of ST131 in Besançon University Hospital

The sequence type 131 (ST131) is a predominant lineage among extraintestinal pathogenic Escherichia coli. It plays a major role in the worldwide dissemination of E. coli that produce exten...

A Phase Ⅳ Clinical Trial of the Recombinant Hepatitis E Vaccine (Escherichia Coli)(the Lot Consistency Trial)

This study is to evaluate lot-lot consistency of Recombinant Hepatitis E Vaccine (Escherichia Coli) Hecolin®.

Characteristics of Lower Respiratory Tract Escherichia Coli Isolates in Mechanically Ventilated Intensive Care Patients

Prospective, multicenter observational study to collect Escherichia coli (E. coli) isolates originating from mechanically ventilated intensive care unit (ICU) patients; in order to charact...

The Protective Immune Response to Attenuated Enterotoxigenic Escherichia Coli Infection

The existing diarrhoeagenic Escherichia coli (E. coli) challenge model is already suitable for dietary interventions in its current form, targeted to impact on the immediate clinical sympt...

Medical and Biotech [MESH] Definitions

Strains of ESCHERICHIA COLI that are a subgroup of SHIGA-TOXIGENIC ESCHERICHIA COLI. They cause non-bloody and bloody DIARRHEA; HEMOLYTIC UREMIC SYNDROME; and hemorrhagic COLITIS. An important member of this subgroup is ESCHERICHIA COLI O157-H7.

A verocytotoxin-producing serogroup belonging to the O subfamily of Escherichia coli which has been shown to cause severe food-borne disease. A strain from this serogroup, serotype H7, which produces SHIGA TOXINS, has been linked to human disease outbreaks resulting from contamination of foods by E. coli O157 from bovine origin.

A toxin produced by certain pathogenic strains of ESCHERICHIA COLI such as ESCHERICHIA COLI O157. It is closely related to SHIGA TOXIN produced by SHIGELLA DYSENTERIAE.

A toxin produced by certain pathogenic strains of ESCHERICHIA COLI such as ESCHERICHIA COLI O157. It shares 50-60% homology with SHIGA TOXIN and SHIGA TOXIN 1.

A class of toxins that inhibit protein synthesis by blocking the interaction of ribosomal RNA; (RNA, RIBOSOMAL) with PEPTIDE ELONGATION FACTORS. They include SHIGA TOXIN which is produced by SHIGELLA DYSENTERIAE and a variety of shiga-like toxins that are produced by pathologic strains of ESCHERICHIA COLI such as ESCHERICHIA COLI O157.

Quick Search


DeepDyve research library

Relevant Topic

Within medicine, nutrition (the study of food and the effect of its components on the body) has many different roles. Appropriate nutrition can help prevent certain diseases, or treat others. In critically ill patients, artificial feeding by tubes need t...

Searches Linking to this Article