Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added.

08:00 EDT 2nd July 2018 | BioPortfolio

Summary of "Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added."

In recent years, the awareness of consumers about the impact of food on health is constantly increasing. A high amount of dietary antioxidant intake can be supplied by beverages widely consumed, such as wine, coffee, beer. Recently, an increase in the consumer interest was observed for beer, in consequence of the high phenolic antioxidants and low ethanol content present in this beverage. Among all beer types, in recent years, consumption of craft beers has gained popularity. Being an unpasteurized and unfiltered, craft beer is potentially a new vehicle for delivering health effects. While health benefits of lactic acid bacteria as probiotics are well known, few data are available on probiotic yeasts in fermented food. Therefore, this study was aimed to analyse the effect of integrating the well-known probiotic yeast strain of S. cerevisiae var. boulardii (S.b) in mixed cultures with S. cerevisiae strains for production of beers with increased healthy benefits. The probiotic strain of S.b was tested in mixed cultures with selected S. cerevisiae strains, during wort fermentation. As the viability during processing operations is one of the criteria for selecting suitable strains of probiotic microorganisms, the survival of probiotic yeast during the fermentation and the presence of highly viable cells at the end of fermentations were evaluated. In almost all the mixed fermentations, at the end of the process the probiotic yeast was predominant on S. cerevisiae strain, and the experimental beers contained a high number of viable cells of S.b strain (ranging between 8 × 10 and 7.0 × 10/mL). The analysis of experimental beers for the content of main volatile compounds showed that the inclusion of S.b strain in mixed starter did not affect negatively beer aroma. Moreover, the inclusion of S.b strain in mixed starters determined an increase in the antioxidant activity and polyphenols content, in comparison to beers from single starter fermentations, indicating the influence of S.b strain on these parameters. Some mixed starter cultures tested in this study resulted a very promising tool to increase the healthy quality of the product, such as the improve the antioxidant activity and polyphenols content of beer.


Journal Details

This article was published in the following journal.

Name: International journal of food microbiology
ISSN: 1879-3460
Pages: 22-30


DeepDyve research library

PubMed Articles [5582 Associated PubMed Articles listed on BioPortfolio]

Quantitative assessment of DNA damage in the industrial ethanol production strain Saccharomyces cerevisiae PE-2.

Lignocellulosic hydrolysates remain one of the most abundantly used substrates for the sustainable production of second generation fuels and chemicals with Saccharomyces cerevisiae. Nevertheless, ferm...

Biochemical characterization and evaluation of invertases produced from Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa for the production of fructooligosaccharides.

Invertases are used for several purposes; one among these is the production of fructooligosaccharides. The aim of this study was to biochemically characterize invertase from industrial Saccharomyces c...

Fermentation of Saccharomyces cerevisiae - combining kinetic modeling and optimization techniques points out avenues to effective process design.

A combined experimental/theoretical approach is presented, for improving the predictability of Saccharomyces cerevisiae fermentations. In particular, a mathematical model was developed explicitly taki...

Cell-to-cell contact mechanism modulates Starmerella bacillaris death in mixed culture fermentations with Saccharomyces cerevisiae.

The use of mixed culture fermentations with selected Starmerella bacillaris and Saccharomyces cerevisiae strains is gaining winemaking attention, mainly due to their ability to enhance particular char...

Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.

Utilization of renewable feedstocks for the production of bio-based bulk chemicals, such as 2,3-butanediol (2,3-BDO), by engineered strains of the non-pathogenic yeast, Saccharomyces cerevisiae, has r...

Clinical Trials [981 Associated Clinical Trials listed on BioPortfolio]

Effect of Oral Probiotic Yeast on the Composition of the Vaginal Microbiota in Healthy Women

This study is designed to evaluate the impact of oral consumption of the probiotic yeast CNCM I-3856 on healthy vaginal microbiota

Effect of a Locally Delivered Probiotic in Periodontitis

Saccharomyces boulardii is commonly employed as a live non-pathogenic probiotic microbial feed or food supplement. S. boulardii reduces the secretion of key pro inflammatory cytokines and ...

A Pilot Trial of the Immunogenicity, and Safety of GI-4000; an Inactivated Recombinant Saccharomyces Cerevisiae Expressing Mutant Ras Protein, as Consolidation Therapy Following Curative Treatment for Stage I-III Non-Small Cell Lung Cancer (NSCLC) With Tu

This is a consolidation therapy trial evaluating GI-4000 in subjects with NSCLC treated with curative intent who are disease free at their first post-treatment restaging assessment.

Effect Of A Locally Delivered Probiotic Sacchraomyces Boulardii In The Management Of Chronic Periodontitis

This study was carried out in the Department of Periodontology and source of patient was be from the outpatient section of Tatyasaheb Kore Dental College & Research Centre, New Pargaon. St...

Oral Administration of Tannins and Flavonoids vs Sacchaomyces Boulardii in Pediatric Acute Diarrhea

Evaluation of the efficacy of a treatment with Actitan-F, a natural molecular complex of tannins (from Agrimony and Tormentil) and flavonoids (Chamomile) added to SOR compared to Saccaromi...

Medical and Biotech [MESH] Definitions

A member of the Rho family of MONOMERIC GTP-BINDING PROTEINS from SACCHAROMYCES CEREVISIAE. It is involved in morphological events related to the cell cycle. This enzyme was formerly listed as EC

Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.

A set of nuclear proteins in SACCHAROMYCES CEREVISIAE that are required for the transcriptional repression of the silent mating type loci. They mediate the formation of silenced CHROMATIN and repress both transcription and recombination at other loci as well. They are comprised of 4 non-homologous, interacting proteins, Sir1p, Sir2p, Sir3p, and Sir4p. Sir2p, an NAD-dependent HISTONE DEACETYLASE, is the founding member of the family of SIRTUINS.

A protein kinase encoded by the Saccharomyces cerevisiae CDC28 gene and required for progression from the G1 PHASE to the S PHASE in the CELL CYCLE.

A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.

Quick Search


DeepDyve research library

Relevant Topic

Food is any substance consumed to provide nutritional support for the body. It is usually of plant or animal origin, and contains essential nutrients, such as carbohydrates, fats, proteins, vitamins, or minerals. The substance is ingested by an organism ...

Searches Linking to this Article