Self-Organizing RBF Neural Network Using an Adaptive Gradient Multiobjective Particle Swarm Optimization.

08:00 EDT 31st October 2017 | BioPortfolio

Summary of "Self-Organizing RBF Neural Network Using an Adaptive Gradient Multiobjective Particle Swarm Optimization."

One of the major obstacles in using radial basis function (RBF) neural networks is the convergence toward local minima instead of the global minima. For this reason, an adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm is designed to optimize both the structure and parameters of RBF neural networks in this paper. First, the AGMOPSO algorithm, based on a multiobjective gradient method and a self-adaptive flight parameters mechanism, is developed to improve the computation performance. Second, the AGMOPSO-based self-organizing RBF neural network (AGMOPSO-SORBF) can optimize the parameters (centers, widths, and weights), as well as determine the network size. The goal of AGMOPSO-SORBF is to find a tradeoff between the accuracy and the complexity of RBF neural networks. Third, the convergence analysis of AGMOPSO-SORBF is detailed to ensure the prerequisite of any successful applications. Finally, the merits of our proposed approach are verified on multiple numerical examples. The results indicate that the proposed AGMOPSO-SORBF achieves much better generalization capability and compact network structure than some other existing methods.


Journal Details

This article was published in the following journal.

Name: IEEE transactions on cybernetics
ISSN: 2168-2275


DeepDyve research library

PubMed Articles [8649 Associated PubMed Articles listed on BioPortfolio]

Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods.

This paper presents a Deep Learning approach for traffic sign recognition systems. Several classification experiments are conducted over publicly available traffic sign datasets from Germany and Belgi...

Effective neural network training with adaptive learning rate based on training loss.

A method that uses an adaptive learning rate is presented for training neural networks. Unlike most conventional updating methods in which the learning rate gradually decreases during training, the pr...

Recursive Adaptive Sparse Exponential Functional Link Neural Network for Nonlinear AEC in Impulsive Noise Environment.

Recently, an adaptive exponential trigonometric functional link neural network (AETFLN) architecture has been introduced to enhance the nonlinear processing capability of the trigonometric functional ...

Neural robust stabilization via event-triggering mechanism and adaptive learning technique.

The robust control synthesis of continuous-time nonlinear systems with uncertain term is investigated via event-triggering mechanism and adaptive critic learning technique. We mainly focus on combinin...

Adaptive Neural Network Control for Robotic Manipulators With Unknown Deadzone.

This paper addresses the problem of robotic manipulators with unknown deadzone. In order to tackle the uncertainty and the unknown deadzone effect, we introduce adaptive neural network (NN) control fo...

Clinical Trials [1762 Associated Clinical Trials listed on BioPortfolio]

Neural Enabled Prosthesis for Upper Limb Amputees

This study is designed to evaluate the feasibility of The Adaptive Neural Systems Neural-Enabled Prosthetic Hand (ANS-NEPH) system.

CPAP Titration Using an Artificial Neural Network: A Randomized Controlled Study

The purpose of the study is to determine the validity of the prediction model in reducing the rate of CPAP titration failure and in achieving a shorter time to optimal pressure

Neural Correlates of Repeated tDCS

Healthy ageing and pathological ageing in the context of a neurodegenerative disease are both associated with changes in brain network integrity. Episodic memory is especially affected in ...

Neural and Kinematic Features of Freezing of Gait for Adaptive Neurostimulation

Continuous deep brain stimulation (cDBS) is an established therapy for the major motor signs in Parkinson's disease, however some patients find that it does not adequately treat their free...

Comparison of RVOT Gradient Under Anaesthesia With Post-operative Gradient in Patients Undergoing TOF Repair

The primary objective of the study will be to compare intraoperative post TOF repair RVOT gradient under two different anaesthetic depths. Secondary objectives will be to follow up change ...

Medical and Biotech [MESH] Definitions

Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)

A computer architecture, implementable in either hardware or software, modeled after biological neural networks. Like the biological system in which the processing capability is a result of the interconnection strengths between arrays of nonlinear processing nodes, computerized neural networks, often called perceptrons or multilayer connectionist models, consist of neuron-like units. A homogeneous group of units makes up a layer. These networks are good at pattern recognition. They are adaptive, performing tasks by example, and thus are better for decision-making than are linear learning machines or cluster analysis. They do not require explicit programming.

A technique used to separate particles according to their densities in a continuous density gradient. The sample is usually mixed with a solution of known gradient materials and subjected to centrifugation. Each particle sediments to the position at which the gradient density is equal to its own. The range of the density gradient is usually greater than that of the sample particles. It is used in purifying biological materials such as proteins, nucleic acids, organelles, and cell types.

An early embryonic developmental process of CHORDATES that is characterized by morphogenic movements of ECTODERM resulting in the formation of the NEURAL PLATE; the NEURAL CREST; and the NEURAL TUBE. Improper closure of the NEURAL GROOVE results in congenital NEURAL TUBE DEFECTS.

The two longitudinal ridges along the PRIMITIVE STREAK appearing near the end of GASTRULATION during development of nervous system (NEURULATION). The ridges are formed by folding of NEURAL PLATE. Between the ridges is a neural groove which deepens as the fold become elevated. When the folds meet at midline, the groove becomes a closed tube, the NEURAL TUBE.

Quick Search


DeepDyve research library

Searches Linking to this Article