Self-Organizing RBF Neural Network Using an Adaptive Gradient Multiobjective Particle Swarm Optimization.

08:00 EDT 31st October 2017 | BioPortfolio

Summary of "Self-Organizing RBF Neural Network Using an Adaptive Gradient Multiobjective Particle Swarm Optimization."

One of the major obstacles in using radial basis function (RBF) neural networks is the convergence toward local minima instead of the global minima. For this reason, an adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm is designed to optimize both the structure and parameters of RBF neural networks in this paper. First, the AGMOPSO algorithm, based on a multiobjective gradient method and a self-adaptive flight parameters mechanism, is developed to improve the computation performance. Second, the AGMOPSO-based self-organizing RBF neural network (AGMOPSO-SORBF) can optimize the parameters (centers, widths, and weights), as well as determine the network size. The goal of AGMOPSO-SORBF is to find a tradeoff between the accuracy and the complexity of RBF neural networks. Third, the convergence analysis of AGMOPSO-SORBF is detailed to ensure the prerequisite of any successful applications. Finally, the merits of our proposed approach are verified on multiple numerical examples. The results indicate that the proposed AGMOPSO-SORBF achieves much better generalization capability and compact network structure than some other existing methods.


Journal Details

This article was published in the following journal.

Name: IEEE transactions on cybernetics
ISSN: 2168-2275


DeepDyve research library

PubMed Articles [9065 Associated PubMed Articles listed on BioPortfolio]

Soft sensor modeling of chemical process based on self-organizing recurrent interval type-2 fuzzy neural network.

This study introduces a novel self-organizing recurrent interval type-2 fuzzy neural network (SRIT2FNN) for the construction of a soft sensor model for a complex chemical process. The proposed SRIT2FN...

Distributed Adaptive Tracking Synchronization for Coupled Reaction-Diffusion Neural Network.

This paper considers the tracking synchronization problem for a class of coupled reaction-diffusion neural networks (CRDNNs) with undirected topology. For the case where the tracking trajectory has id...

A novel MRI Segmentation method using CNN based Correction Network for MRI Guided Adaptive Radiotherapy.

To expedite the contouring process for MRI-guided adaptive radiotherapy (MR-IGART), a convolutional neural network (CNN) deep-learning (DL) model is proposed to accurately segment the liver, kidneys, ...

Recursive Adaptive Sparse Exponential Functional Link Neural Network for Nonlinear AEC in Impulsive Noise Environment.

Recently, an adaptive exponential trigonometric functional link neural network (AETFLN) architecture has been introduced to enhance the nonlinear processing capability of the trigonometric functional ...

Output-Feedback Adaptive Neural Controller for Uncertain Pure-Feedback Nonlinear Systems Using a High-Order Sliding Mode Observer.

A novel adaptive neural output-feedback controller for SISO nonaffine pure-feedback nonlinear systems is proposed. The majority of the previously described adaptive neural controllers for pure-feedbac...

Clinical Trials [1976 Associated Clinical Trials listed on BioPortfolio]

Neural Enabled Prosthesis for Upper Limb Amputees

This study is designed to evaluate the feasibility of The Adaptive Neural Systems Neural-Enabled Prosthetic Hand (ANS-NEPH) system.

CPAP Titration Using an Artificial Neural Network: A Randomized Controlled Study

The purpose of the study is to determine the validity of the prediction model in reducing the rate of CPAP titration failure and in achieving a shorter time to optimal pressure

Neural Correlates of Repeated tDCS

Healthy ageing and pathological ageing in the context of a neurodegenerative disease are both associated with changes in brain network integrity. Episodic memory is especially affected in ...

Development of a Novel Convolution Neural Network for Arrhythmia Classification

Identifying the correct arrhythmia at the time of a clinic event including cardiac arrest is of high priority to patients, healthcare organizations, and to public health. Recent developmen...

Neural and Kinematic Features of Freezing of Gait for Adaptive Neurostimulation

Continuous deep brain stimulation (cDBS) is an established therapy for the major motor signs in Parkinson's disease, however some patients find that it does not adequately treat their free...

Medical and Biotech [MESH] Definitions

Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)

A computer architecture, implementable in either hardware or software, modeled after biological neural networks. Like the biological system in which the processing capability is a result of the interconnection strengths between arrays of nonlinear processing nodes, computerized neural networks, often called perceptrons or multilayer connectionist models, consist of neuron-like units. A homogeneous group of units makes up a layer. These networks are good at pattern recognition. They are adaptive, performing tasks by example, and thus are better for decision-making than are linear learning machines or cluster analysis. They do not require explicit programming.

A technique used to separate particles according to their densities in a continuous density gradient. The sample is usually mixed with a solution of known gradient materials and subjected to centrifugation. Each particle sediments to the position at which the gradient density is equal to its own. The range of the density gradient is usually greater than that of the sample particles. It is used in purifying biological materials such as proteins, nucleic acids, organelles, and cell types.

An early embryonic developmental process of CHORDATES that is characterized by morphogenic movements of ECTODERM resulting in the formation of the NEURAL PLATE; the NEURAL CREST; and the NEURAL TUBE. Improper closure of the NEURAL GROOVE results in congenital NEURAL TUBE DEFECTS.

The two longitudinal ridges along the PRIMITIVE STREAK appearing near the end of GASTRULATION during development of nervous system (NEURULATION). The ridges are formed by folding of NEURAL PLATE. Between the ridges is a neural groove which deepens as the fold become elevated. When the folds meet at midline, the groove becomes a closed tube, the NEURAL TUBE.

Quick Search


DeepDyve research library

Searches Linking to this Article