Advertisement

Topics

PubMed Journals Articles About "Cell Signaling Technologies" - Page: 5 RSS

11:48 EDT 14th August 2018 | BioPortfolio

Cell Signaling Technologies PubMed articles on BioPortfolio. Our PubMed references draw on over 21 million records from the medical literature. Here you can see the latest Cell Signaling Technologies articles that have been published worldwide.

More Information about "Cell Signaling Technologies" on BioPortfolio

We have published hundreds of Cell Signaling Technologies news stories on BioPortfolio along with dozens of Cell Signaling Technologies Clinical Trials and PubMed Articles about Cell Signaling Technologies for you to read. In addition to the medical data, news and clinical trials, BioPortfolio also has a large collection of Cell Signaling Technologies Companies in our database. You can also find out about relevant Cell Signaling Technologies Drugs and Medications on this site too.

Showing "Cell Signaling Technologies" PubMed Articles 101–125 of 30,000+

Cytoplasmic Intermediate Filaments in Cell Biology.

Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellu...


Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System.

CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repressi...

Myeloid p38α signaling promotes intestinal IGF-1 production and inflammation-associated tumorigenesis.

The protein kinase p38α plays a key role in cell homeostasis, and p38α signaling in intestinal epithelial cells protects against colitis-induced tumorigenesis. However, little is known on the contribution of p38α signaling in intestinal stromal cells. Here, we show that myeloid cell-specific downregulation of p38α protects mice against inflammation-associated colon tumorigenesis. The reduced tumorigenesis correlates with impaired detection in the colon of crucial chemokines for immune cell recruitment. ...


α-cyano-4-hydroxycinnamate impairs pancreatic cancer cells by stimulating the p38 signaling pathway.

Multiple studies are currently targeting dysregulated cancer cell metabolism with distinct combinations of inhibitors. In this study, we evaluated in pancreatic cancer cells metformin, which blocks oxidative phosphorylation, in combination with α-cyano-4-hydroxycinnamate, which has been reported to inhibit the export of lactate from the cytosol. The combination of metformin with α-cyano-4-hydroxycinnamate had a major inhibitory effect on the migration of 6606PDA cells. Monotherapy with α-cyano-4-hydroxyc...

The caveolar membrane system in endothelium: From cell signaling to vascular pathology.

Caveolae are 50- to 100-nm cholesterol and glycosphingolipid-rich flask-shaped invaginations commonly observed in many terminally differentiated cells. These organelles have been described in many cell types and are particularly abundant in endothelial cells, where they have been involved in the regulation of certain signaling pathways. Specific scaffolding proteins termed caveolins, along with the more recently discovered members of the cavin family, represent the major protein components during caveolae b...

Viable Cell Culture Banking for Biodiversity Characterization and Conservation.

Because living cells can be saved for indefinite periods, unprecedented opportunities for characterizing, cataloging, and conserving biological diversity have emerged as advanced cellular and genetic technologies portend new options for preventing species extinction. Crucial to realizing the potential impacts of stem cells and assisted reproductive technologies on biodiversity conservation is the cryobanking of viable cell cultures from diverse species, especially those identified as vulnerable to extinctio...

GTPases Rac1 and Ras Signaling from Endosomes.

The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activatio...

Cdc37 facilitates cell survival of colorectal carcinoma via activating the CDK4 signaling pathway.

Cdc37 is an important partner for HSP90, assisting in molecular chaperone activities, particularly with regard to the regulation of protein kinases. Given its influence on cell growth pathways, Cdc37 has been discussed as a potential intermediate in carcinogenesis. However, to date, the potential functional roles and molecular mechanisms by which Cdc37 regulated cell survival remained unclear in colorectal carcinoma. Here, we investigated the expression of Cdc37 and its clinical significance in colorectal c...

Centromeric signaling proteins boost G1 cyclin degradation and modulate cell size in budding yeast.

Cell size scales with ploidy in a great range of eukaryotes, but the underlying mechanisms remain unknown. Using various orthogonal single-cell approaches, we show that cell size increases linearly with centromere (CEN) copy number in budding yeast. This effect is due to a G1 delay mediated by increased degradation of Cln3, the most upstream G1 cyclin acting at Start, and specific centromeric signaling proteins, namely Mad3 and Bub3. Mad3 binds both Cln3 and Cdc4, the adaptor component of the Skp1/Cul1/F-bo...

Perfluorooctanoic acid stimulates ovarian cancer cell migration, invasion via ERK/NF-κB/MMP-2/-9 pathway.

As widely used in consumer products, perfluorooctanoic acid (PFOA) has become a common environmental pollutant, which has been detected in human serum and associated with cancers. Our previous study showed that PFOA is a carcinogen that promotes endometrial cancer cell migration and invasion through activation of ERK/mTOR signaling. Here, we showed that PFOA (≥100 nM) treatment also stimulated A2780 ovarian cancer cell invasion and migration, which correlated with increased matrix metalloproteinases MMP...

Interleukin-6 secretion is limited by self-signaling in endosomes.

Cells producing cytokines often express the receptor for the same cytokine, which makes them prone to autocrine signaling. How cytokine release and signaling are regulated in the same cell is not understood. In this study, we demonstrate that signaling by exogenous and self-synthesized inflammatory cytokine interleukin-6 (IL-6) within endosomal compartments acts as a cellular brake that limits synthesis of IL-6. Our data show that IL-6 is internalized by dendritic cells and signals from endosomal compartmen...

Erbin suppresses KSR1-mediated RAS/RAF signaling and tumorigenesis in colorectal cancer.

Erbin belongs to the LAP (leucine-rich repeat and PDZ domain) family of scaffolding proteins that plays important roles in orchestrating cell signaling. Here we show that Erbin functions as a tumor suppressor in colorectal cancer (CRC). Analysis of Erbin expression in CRC patient specimens revealed that Erbin was downregulated at both mRNA and protein levels in tumor tissues. Knockdown of Erbin disrupted epithelial cell polarity and increased cell proliferation in 3D culture. In addition, silencing Erbin re...

Ric-8A, a GEF for heterotrimeric G-proteins, controls cranial neural crest cell polarity during migration.

The neural crest (NC) is a transient embryonic cell population that migrates extensively during development. Ric-8A, a guanine nucleotide exchange factor (GEF) for different Gα subunits regulates cranial NC (CNC) cell migration in Xenopus through a mechanism that still remains to be elucidated. To properly migrate, CNC cells establish an axis of polarization and undergo morphological changes to generate protrusions at the leading edge and retraction of the cell rear. Here, we aim to study the role of Ric-8...

CRISPR Screens Uncover Genes that Regulate Target Cell Sensitivity to the Morphogen Sonic Hedgehog.

To uncover regulatory mechanisms in Hedgehog (Hh) signaling, we conducted genome-wide screens to identify positive and negative pathway components and validated top hits using multiple signaling and differentiation assays in two different cell types. Most positive regulators identified in our screens, including Rab34, Pdcl, and Tubd1, were involved in ciliary functions, confirming the central role for primary cilia in Hh signaling. Negative regulators identified included Megf8, Mgrn1, and an unannotated gen...

Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis.

Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the Wnt signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the Wnt signaling pathway, which significantly partic...

TRIM24 promotes hepatocellular carcinoma progression via AMPK signaling.

Hepatocellular carcinoma (HCC) is one of the most common cancers diagnosed worldwide. However, the mechanism underlying HCC pathogenesis remains unknown. In the present study, TRIM24 was found increased in human HCC clinical samples and positively correlated with HCC tumor grade. Furthermore, TRIM24 knockdown inhibits proliferation and migration in a human HCC cell line in vitro while also inhibiting tumor growth in vivo. Mechanistically, TRIM24 appears to promote liver tumor development via AMPK signaling ...

What neurons tell themselves: autocrine signals play essential roles in neuronal development and function.

Although retrograde neurotrophin signaling has provided an immensely influential paradigm for understanding growth factor signaling in the nervous system, recent studies indicate that growth factors also signal via cell-autonomous, or autocrine, mechanisms. Autocrine signals have been discovered in many neuronal contexts, providing insights into their regulation and function. The growing realization of the importance of cell-autonomous signaling stems from advances in both conditional genetic approaches and...

Differential Regulation of Cell Proliferation and Apoptosis by Melatonin Receptor Subtype-Signaling in the Adult Murine Brain.

Background/Aims: Zeitgeber time (ZT)-dependent changes in cell proliferation and apoptosis are regulated by melatonin receptor (MT)-mediated signaling in the adult hippocampus and hypothalamic-hypophyseal system. There are two G-protein-coupled MT-subtypes, MT1 and MT2. Therefore, the present study examined which MT-subtype is required for regulation of ZT-dependent changes in cell proliferation and/or apoptosis in the adult murine brain and pituitary.

Sevoflurane affects neurogenesis through cell cycle arrest via inhibiting wnt/β-catenin signaling pathway in mouse neural stem cells.

The development of central nervous system requires proliferation of neural stem cells followed by differentiation. Cell cycle parameters are closely related with cell fate specification and differentiation. Recent researches indicated that wnt/β-catenin signaling pathway might cause proliferation inhibition and differentiation abnormality through interfering NSCs cell cycle. Our previous research also showed that multiple sevoflurane exposure to neural stem cells inhibited proliferation via repressing tran...

Autonomy declared by primary cilia through compartmentalization of membrane phosphoinositides.

The primary cilium is a cell surface projection from plasma membrane which transduces external stimuli to diverse signaling pathways. To function as an independent signaling organelle, the molecular composition of the ciliary membrane has to be distinct from that of the plasma membrane. Here, we review recent findings which have deepened our understanding of the unique yet dynamic phosphoinositide profile found in the primary cilia.

βarrestin-2-dependent Signaling Promotes CCR4-mediated Chemotaxis of Murine T Helper Type 2 Cells.

Allergic asthma is a complex inflammatory disease that leads to significant healthcare costs and reduction in quality of life. Although many cell types are implicated in the pathogenesis of asthma, CD4+ T helper type 2 cells (Th2) are centrally involved. We previously reported that the asthma phenotype is virtually absent in ovalbumin-sensitized and -challenged mice that lack global expression of βarrestin-2 and that CD4+ T cells from these mice displayed significantly reduced C-C motif chemokine 22 (CCL22...

TLR signaling inhibitor, phenylmethimazole, in combination with tamoxifen inhibits human breast cancer cell viability and migration.

Heightened co-expression and dysregulated signaling associated with Toll-like receptor 3 (TLR3) and Wnt5a is an integral component of solid tumors and hematological malignancies. Our previous findings in pancreatic cancer and melanoma suggest that inhibition of these pathways by a TLR3 signaling inhibitor, phenylmethimazole (C10), results in significantly decreased IL-6 levels, STAT3 phosphorylation, minimal cancer cell migration and reduced cancer cell growth in vitro and in vivo. In this study, we extende...

Control of Blood Vessel Formation by Notch Signaling.

Blood vessels span throughout the body to nourish tissue cells and to provide gateways for immune surveillance. Endothelial cells that line capillaries have the remarkable capacity to be quiescent for years but to switch rapidly into the activated state once new blood vessels need to be formed. In addition, endothelial cells generate niches for progenitor and tumor cells and provide organ-specific paracrine (angiocrine) factors that control organ development and regeneration, maintenance of homeostasis and ...

Modeling the Notch Response.

NOTCH signaling regulates developmental processes in all tissues and all organisms across the animal kingdom. It is often involved in coordinating the differentiation of neighboring cells into different cell types. As our knowledge on the structural, molecular and cellular properties of the NOTCH pathway expands, there is a greater need for quantitative methodologies to get a better understanding of the processes controlled by NOTCH signaling. In recent years, theoretical and computational approaches to NOT...

Involvement of Tsukushi in diverse developmental processes.

Tsukushi (TSK) is a small signaling molecule which takes part in different developmental processes of multiple vertebrate organisms. The diverse activity of TSK depends on its ability to bind various intermediate molecules from different major signaling pathways. Interactions of TSK with BMP, FGF, TGF-β and Wnt pathways have already been confirmed. In this review, we will introduce the latest information regarding the involvement of TSK in developmental events. We suggest a fine tuning role for TSK in mult...


Advertisement
Quick Search
Advertisement
Advertisement