Advertisement

Topics

PubMed Journal Database | Advanced materials (Deerfield Beach, Fla.) RSS

02:54 EDT 25th May 2019 | BioPortfolio

The US National Library of Medicine and National Institutes of Health manage PubMed.gov which comprises of more than 29 million records, papers, reports for biomedical literature, including MEDLINE, life science and medical journals, articles, reviews, reports and  books.

BioPortfolio aims to cross reference relevant information on published papers, clinical trials and news associated with selected topics - speciality.

For example view all recent relevant publications on Epigenetics and associated publications and clincial trials.

Showing PubMed Articles 1–25 of 1,300+ from Advanced materials (Deerfield Beach, Fla.)

Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electro-oxidation.

Integrating thermodynamically favorable ethanol reforming reactions with hybrid water electrolysis will allow room-temperature production of high-value organic products and decoupled hydrogen evolution. However, electrochemical reforming of ethanol has not received adequate attention due to its low catalytic efficiency and poor selectivity, which are caused by the multiple groups and chemical bonds of ethanol. In addition to the thermodynamic properties affected by the electronic structure of the catalyst, ...

Negative Transconductance Heterojunction Organic Transistors and their Application to Full-Swing Ternary Circuits.

Multivalued logic (MVL) computing could provide bit density beyond that of Boolean logic. Unlike conventional transistors, heterojunction transistors (H-TRs) exhibit negative transconductance (NTC) regions. Using the NTC characteristics of H-TRs, ternary inverters have recently been demonstrated. However, they have shown incomplete inverter characteristics; the output voltage (V ) does not fully swing from V to G . A new H-TR device structure that consists of a dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene...

Low-Cost Counter-Electrode Materials for Dye-Sensitized and Perovskite Solar Cells.

It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon-based solar cells and thin-film solar cells have been commercialized, developing low-cost and highly efficient solar cells to meet future needs is still a long-term challenge. Some emerging solar-cell types, such as dye-sensitized and perovskite, are approaching acceptable performa...

Design Principles of Ionic Liquids for Transdermal Drug Delivery.

Ionic liquids (ILs) and deep eutectic solvents have shown great promise in drug delivery applications. Choline-based ILs, in particular choline and geranic acid (CAGE), have been used to enhance the transdermal delivery of several small and large molecules. However, detailed studies outlining the design principles of ILs for transdermal drug delivery are still lacking. Using two model drugs of differing hydrophilicities, acarbose and ruxolitinib and 16 ILs, the dependence of skin penetration on the chemical...

Systematic Analysis of the Improvements in Magnetic Resonance Microscopy with Ferroelectric Composite Ceramics.

The spatial resolution and signal-to-noise ratio (SNR) attainable in magnetic resonance microscopy (MRM) are limited by intrinsic probe losses and probe-sample interactions. In this work, the possibility to exceed the SNR of a standard solenoid coil by more than a factor-of-two is demonstrated theoretically and experimentally. This improvement is achieved by exciting the first transverse electric mode of a low-loss ceramic resonator instead of using the quasi-static field of the metal-wire solenoid coil. Ba...

Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect.

Contact electrification (CE) (or triboelectrification) is a well-known phenomenon, and the identity of the charge carriers and their transfer mechanism have been discussed for decades. Recently, the species of transferred charges in the CE between a metal and a ceramic was revealed as electron transfer and its subsequent release is dominated by the thermionic emission process. Here, the release of CE-induced electrostatic charges on a dielectric surface under photon excitation is studied by varying the ligh...

An Autotransferable g-C N Li -Modulating Layer toward Stable Lithium Anodes.

Commercial deployment of lithium anodes has been severely impeded by the poor battery safety, unsatisfying cycling lifespan, and efficiency. Recently, building artificial interfacial layers over a lithium anode was regarded as an effective strategy to stabilize the electrode. However, the fabrications reported so far have mostly been conducted directly upon lithium foil, often requiring stringent reaction conditions with indispensable inert environment protection and highly specialized reagents due to the h...

Rational Kinetics Control toward Universal Growth of 2D Vertically Stacked Heterostructures.

The rational control of the nucleation and growth kinetics to enable the growth of 2D vertical heterostructure remains a great challenge. Here, an in-depth study is provided toward understanding the growth mechanism of transition metal dichalcogenides (TMDCs) vertical heterostructures in terms of the nucleation and kinetics, where active clusters with a high diffusion barrier will induce the nucleation on top of the TMDC templates to realize vertical heterostructures. Based on this mechanism, in the experim...

A Mesoporous Nanoenzyme Derived from Metal-Organic Frameworks with Endogenous Oxygen Generation to Alleviate Tumor Hypoxia for Significantly Enhanced Photodynamic Therapy.

Tumor hypoxia compromises the therapeutic efficiency of photodynamic therapy (PDT) as the local oxygen concentration plays an important role in the generation of cytotoxic singlet oxygen ( O ). Herein, a versatile mesoporous nanoenzyme (NE) derived from metal-organic frameworks (MOFs) is presented for in situ generation of endogenous O to enhance the PDT efficacy under bioimaging guidance. The mesoporous NE is constructed by first coating a manganese-based MOFs with mesoporous silica, followed by a facile a...

Electrochemical CO Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design.

The electrochemical reduction of CO is a promising route to convert intermittent renewable energy to storable fuels and valuable chemical feedstocks. To scale this technology for industrial implementation, a deepened understanding of how the CO reduction reaction (CO RR) proceeds will help converge on optimal operating parameters. Here, a techno-economic analysis is presented with the goal of identifying maximally profitable products and the performance targets that must be met to ensure economic viability-...

Molecularly Imprinted Nanoparticles for Biomedical Applications.

Molecularly imprinted polymers (MIPs) are synthetic receptors with tailor-made recognition sites for target molecules. Their high affinity and selectivity, excellent stability, easy preparation, and low cost make them promising substitutes to biological receptors in many applications where molecular recognition is important. In particular, spherical MIP nanoparticles (or nanoMIPs) with diameters typically below 200 nm have drawn great attention because of their high surface-area-to-volume ratio, easy remova...

Improving the Stability of Metal Halide Perovskite Quantum Dots by Encapsulation.

Metal halide perovskite quantum dots (PQDs), with excellent optical properties and spectacular characteristics of direct and tunable bandgaps, strong light-absorption coefficients, high defect tolerance, and low nonradiative recombination rates, are highly attractive for modern optoelectronic devices. However, the stability issue of PQDs remains a critical challenge of this newly emerged material despite the recent rapid progress. Here, the encapsulation strategies to improve the stability of PQDs are compr...

Bioinspired Viscoelastic Capsules: Delivery Vehicles and Beyond.

Microcapsules are often used as individually dispersed carriers of active ingredients to prolong their shelf life or to protect premature reactions with substances contained in the surrounding. This study goes beyond this application and employs microcapsules as principal building blocks of macroscopic 3D materials with well-defined granular structures. To achieve this goal and inspired by nature, capsules are fabricated from block-copolymer surfactants that are functionalized with catechols, a metal-coordi...

Light-Driven Shape Morphing, Assembly, and Motion of Nanocomposite Gel Surfers.

Patterning of nanoparticles (NPs) via photochemical reduction within thermally responsive hydrogel films is demonstrated as a versatile platform for programming light-driven shape morphing and materials assembly. Responsive hydrogel disks, containing patterned metal NPs, form characteristic wrinkled structures when illuminated at an air/water interface. The resulting distortion of the three-phase (air/water/hydrogel) contact lines induces capillary interactions between two or more disks, which are either at...

Defect-Tailoring Mediated Electron-Hole Separation in Single-Unit-Cell Bi O Br Nanosheets for Boosting Photocatalytic Hydrogen Evolution and Nitrogen Fixation.

Solar photocatalysis is a potential solution to satisfying energy demand and its resulting environmental impact. However, the low electron-hole separation efficiency in semiconductors has slowed the development of this technology. The effect of defects on electron-hole separation is not always clear. A model atomically thin structure of single-unit-cell Bi O Br nanosheets with surface defects is proposed to boost photocatalytic efficiency by simultaneously promoting bulk- and surface-charge separation. Defe...

Highly Efficient Thermally Activated Delayed Fluorescence via J-Aggregates with Strong Intermolecular Charge Transfer.

The development of high-efficiency and low-cost organic emissive materials and devices is intrinsically limited by the energy-gap law and spin statistics, especially in the near-infrared (NIR) region. A novel design strategy is reported for realizing highly efficient thermally activated delayed fluorescence (TADF) materials via J-aggregates with strong intermolecular charge transfer (CT). Two organic donor-acceptor molecules with strong and planar acceptor are designed and synthesized, which can readily for...

Differential Homeostasis of Sessile and Pendant Epithelium Reconstituted in a 3D-Printed "GeminiChip".

Local mechanical cues can affect crucial fate decisions of living cells. Transepithelial stress has been discussed in the context of epithelial monolayers, but the lack of appropriate experimental systems leads current studies to approximate it simply as an in-plane stress. To evaluate possible contribution of force vectors acting in other directions, double epithelium in a 3D-printed "GeminiChip" containing a sessile and a pendant channel is reconstituted. Intriguingly, the sessile epithelia is prone to ap...

Giant Enhancement in the Supercapacitance of NiFe-Graphene Nanocomposites Induced by a Magnetic Field.

The rapid rise in energy demand in the past years has prompted a search for low-cost alternatives for energy storage, supercapacitors being one of the most important devices. It is shown that a dramatic enhancement (≈1100%, from 155 to 1850 F g ) of the specific capacitance of a hybrid stimuli-responsive FeNi -graphene electrode material can be achieved when the charge/discharge cycling is performed in the presence of an applied magnetic field of 4000 G. This result is related to an unprecedented magnetic...

Using Wool Keratin as a Basic Resist Material to Fabricate Precise Protein Patterns.

The ability to pattern natural polymers at different scales is extremely important for many research areas, such as cell culture, regenerative medicine, bioelectronics, tissue engineering, degradable implants, and photonics. For the first time, the use of wool keratin (WK) as a structural biomaterial for fabricating precise protein microarchitectures is presented. Through straightforward biochemical processes, modified WK proteins become intrinsically photoreactive without significant changes in protein str...

Current Status and Future Prospects of Metal-Sulfur Batteries.

Lithium-sulfur batteries are a major focus of academic and industrial energy-storage research due to their high theoretical energy density and the use of low-cost materials. The high energy density results from the conversion mechanism that lithium-sulfur cells utilize. The sulfur cathode, being naturally abundant and environmentally friendly, makes lithium-sulfur batteries a potential next-generation energy-storage technology. The current state of the research indicates that lithium-sulfur cells are now at...

Conductivity Tuning via Doping with Electron Donating and Withdrawing Molecules in Perovskite CsPbI Nanocrystal Films.

Doping of semiconductors enables fine control over the excess charge carriers, and thus the overall electronic properties, crucial to many technologies. Controlled doping in lead-halide perovskite semiconductors has thus far proven to be difficult. However, lower dimensional perovskites such as nanocrystals, with their high surface-area-to-volume ratio, are particularly well-suited for doping via ground-state molecular charge transfer. Here, the tunability of the electronic properties of perovskite nanocrys...

Tunable Modal Birefringence in a Low-Loss Van Der Waals Waveguide.

van der Waals (vdW) crystals are promising candidates for integrated phase retardation applications due to their large optical birefringence. Among the two major types of vdW materials, the hyperbolic vdW crystals are inherently inadequate for optical retardation applications since the supported polaritonic modes are exclusively transverse-magnetic (TM) polarized and relatively lossy. Elliptic vdW crystals, on the other hand, represent a superior choice. For example, molybdenum disulfide (MoS ) is a natural...

3D Graphene-Based Macrostructures for Water Treatment.

Recently, 3D graphene-based macrostructures (3D GBMs) have gained increased attention due to their immense application potential in water treatment. The unique structural features (e.g., large surface area and physically interconnected porous network) as well as fascinating properties (e.g., high electrical conductivity, excellent chemical/thermal stability, ultralightness, and high solar-to-thermal conversion efficiency) render 3D GBMs as promising materials for water purification through adsorption, capac...

Addition of the Lewis Acid Zn(C F ) Enables Organic Transistors with a Maximum Hole Mobility in Excess of 20 cm V s.

Incorporating the molecular organic Lewis acid tris(pentafluorophenyl)borane [B(C F ) ] into organic semiconductors has shown remarkable promise in recent years for controlling the operating characteristics and performance of various opto/electronic devices, including, light-emitting diodes, solar cells, and organic thin-film transistors (OTFTs). Despite the demonstrated potential, however, to date most of the work has been limited to B(C F ) with the latter serving as the prototypical air-stable molecular ...

Graphene's Latest Cousin: Plumbene Epitaxial Growth on a "Nano WaterCube".

While theoretical studies predicted the stability and exotic properties of plumbene, the last group-14 cousin of graphene, its realization has remained a challenging quest. Here, it is shown with compelling evidence that plumbene is epitaxially grown by segregation on a Pd Pb (111) alloy surface. In scanning tunneling microscopy (STM), it exhibits a unique surface morphology resembling the famous Weaire-Phelan bubble structure of the Olympic "WaterCube" in Beijing. The "soap bubbles" of this "Nano WaterCube...


Advertisement
Quick Search
Advertisement
Advertisement