Advertisement

Topics

PubMed Journal Database | Cell reports RSS

22:21 EDT 22nd March 2019 | BioPortfolio

The US National Library of Medicine and National Institutes of Health manage PubMed.gov which comprises of more than 29 million records, papers, reports for biomedical literature, including MEDLINE, life science and medical journals, articles, reviews, reports and  books.

BioPortfolio aims to cross reference relevant information on published papers, clinical trials and news associated with selected topics - speciality.

For example view all recent relevant publications on Epigenetics and associated publications and clincial trials.

Showing PubMed Articles 1–25 of 2,500+ from Cell reports

Somatostatin Interneurons Promote Neuronal Synchrony in the Neonatal Hippocampus.

Synchronized activity is a universal characteristic of immature neural circuits that is essential for their developmental refinement and strongly depends on GABAergic neurotransmission. A major subpopulation of GABA-releasing interneurons (INs) expresses somatostatin (SOM) and proved critical for rhythm generation in adulthood. Here, we report a mechanism whereby SOM INs promote neuronal synchrony in the neonatal CA1 region. Combining imaging and electrophysiological approaches, we demonstrate that SOM INs ...

A Protein Disulfide Isomerase Controls Neuronal Migration through Regulation of Wnt Secretion.

Appropriate Wnt morphogen secretion is required to control animal development and homeostasis. Although correct Wnt globular structure is essential for secretion, proteins that directly mediate Wnt folding and maturation remain uncharacterized. Here, we report that protein disulfide isomerase-1 (PDI-1), a protein-folding catalyst and chaperone, controls secretion of the Caenorhabditis elegans Wnt ortholog EGL-20. We find that PDI-1 function is required to correctly form an anteroposterior EGL-20/Wnt gradie...

SOX2-Dependent Transcription in Clock Neurons Promotes the Robustness of the Central Circadian Pacemaker.

Clock neurons within the mammalian suprachiasmatic nuclei (SCN) encode circadian time using interlocked transcription-translation feedback loops (TTFLs) that drive rhythmic gene expression. However, the contributions of other transcription factors outside of the circadian TTFLs to the functionality of the SCN remain obscure. Here, we report that the stem and progenitor cell transcription factor, sex-determining region Y-box 2 (SOX2), is expressed in adult SCN neurons and positively regulates transcription ...

Modeling Patient-Derived Glioblastoma with Cerebral Organoids.

The prognosis of patients with glioblastoma (GBM) remains dismal, with a median survival of approximately 15 months. Current preclinical GBM models are limited by the lack of a "normal" human microenvironment and the inability of many tumor cell lines to accurately reproduce GBM biology. To address these limitations, we have established a model system whereby we can retro-engineer patient-specific GBMs using patient-derived glioma stem cells (GSCs) and human embryonic stem cell (hESC)-derived cerebral org...

Entosis Controls a Developmental Cell Clearance in C. elegans.

Metazoan cell death mechanisms are diverse and include numerous non-apoptotic programs. One program called entosis involves the invasion of live cells into their neighbors and is known to occur in cancers. Here, we identify a developmental function for entosis: to clear the male-specific linker cell in C. elegans. The linker cell leads migration to shape the gonad and is removed to facilitate fusion of the gonad to the cloaca. We find that the linker cell is cleared in a manner involving cell-cell adhesion...

Prolyl Isomerase Pin1 Suppresses Thermogenic Programs in Adipocytes by Promoting Degradation of Transcriptional Co-activator PRDM16.

Non-shivering thermogenesis in adipocytes provides defense against low temperatures and obesity development, but the underlying regulatory mechanism remains to be fully clarified. Based on both markedly increased Pin1 expression in states of excess nutrition and resistance to obesity development in Pin1 null mice, we speculated that adipocyte Pin1 may play a role in thermogenic programs. Adipose-specific Pin1 knockout (adPin1 KO) mice showed enhanced transcription of thermogenic genes and tolerance to hypot...

In Vivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors.

Regeneration of injured human heart muscle is limited and an unmet clinical need. There are no methods for the reproducible generation of clinical-quality stem cell-derived cardiovascular progenitors (CVPs). We identified laminin-221 (LN-221) as the most likely expressed cardiac laminin. We produced it as human recombinant protein and showed that LN-221 promotes differentiation of pluripotent human embryonic stem cells (hESCs) toward cardiomyocyte lineage and downregulates pluripotency and teratoma-associat...

Enhanced Renewal of Erythroid Progenitors in Myelodysplastic Anemia by Peripheral Serotonin.

Tryptophan as the precursor of several active compounds, including kynurenine and serotonin, is critical for numerous important metabolic functions. Enhanced tryptophan metabolism toward the kynurenine pathway has been associated with myelodysplastic syndromes (MDSs), which are preleukemic clonal diseases characterized by dysplastic bone marrow and cytopenias. Here, we reveal a fundamental role for tryptophan metabolized along the serotonin pathway in normal erythropoiesis and in the physiopathology of MDS-...

Nidogen-1 Contributes to the Interaction Network Involved in Pro-B Cell Retention in the Peri-sinusoidal Hematopoietic Stem Cell Niche.

In the bone marrow, CXCL12 and IL-7 are essential for B cell differentiation, whereas hematopoietic stem cell (HSC) maintenance requires SCF and CXCL12. Peri-sinusoidal stromal (PSS) cells are the main source of IL-7, but their characterization as a pro-B cell niche remains limited. Here, we characterize pro-B cell supporting stromal cells and decipher the interaction network allowing pro-B cell retention. Preferential contacts are found between pro-B cells and PSS cells, which homogeneously express HSC an...

Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics.

Sex determination is a unique process that allows the study of multipotent progenitors and their acquisition of sex-specific fates during differentiation of the gonad into a testis or an ovary. Using time series single-cell RNA sequencing (scRNA-seq) on ovarian Nr5a1-GFP somatic cells during sex determination, we identified a single population of early progenitors giving rise to both pre-granulosa cells and potential steroidogenic precursor cells. By comparing time series single-cell RNA sequencing of XX a...

Nanoscale Subsynaptic Domains Underlie the Organization of the Inhibitory Synapse.

Inhibitory synapses mediate the majority of synaptic inhibition in the brain, thereby controlling neuronal excitability, firing, and plasticity. Although essential for neuronal function, the central question of how these synapses are organized at the subsynaptic level remains unanswered. Here, we use three-dimensional (3D) super-resolution microscopy to image key components of the inhibitory postsynaptic domain and presynaptic terminal, revealing that inhibitory synapses are organized into nanoscale subsyna...

Ndfip Proteins Target Robo Receptors for Degradation and Allow Commissural Axons to Cross the Midline in the Developing Spinal Cord.

Commissural axons initially respond to attractive signals at the midline, but once they cross, they become sensitive to repulsive cues. This switch prevents axons from re-entering the midline. In insects and mammals, negative regulation of Roundabout (Robo) receptors prevents premature response to the midline repellant Slit. In Drosophila, the endosomal protein Commissureless (Comm) prevents Robo1 surface expression before midline crossing by diverting Robo1 into late endosomes. Notably, Comm is not conserv...

Widespread Alterations in Translation Elongation in the Brain of Juvenile Fmr1 Knockout Mice.

FMRP (fragile X mental retardation protein) is a polysome-associated RNA-binding protein encoded by Fmr1 that is lost in fragile X syndrome. Increasing evidence suggests that FMRP regulates both translation initiation and elongation, but the gene specificity of these effects is unclear. To elucidate the impact of Fmr1 loss on translation, we utilize ribosome profiling for genome-wide measurements of ribosomal occupancy and positioning in the cortex of 24-day-old Fmr1 knockout mice. We find a remarkably coh...

DBC1 Regulates p53 Stability via Inhibition of CBP-Dependent p53 Polyubiquitination.

The control of p53 protein stability is critical to its tumor suppressor functions. The CREB binding protein (CBP) transcriptional co-activator co-operates with MDM2 to maintain normally low physiological p53 levels in cells via exclusively cytoplasmic E4 polyubiquitination activity. Using mass spectrometry to identify nuclear and cytoplasmic CBP-interacting proteins that regulate compartmentalized CBP E4 activity, we identified deleted in breast cancer 1 (DBC1) as a stoichiometric CBP-interacting protein t...

Structural Insight into DNA-Dependent Activation of Human Metalloprotease Spartan.

The DNA-dependent metalloprotease Spartan (SPRTN) cleaves DNA-protein crosslinks (DPCs) and protects cells from DPC-induced genome instability. Germline mutations of SPRTN are linked to human Ruijs-Aalfs syndrome (RJALS) characterized by progeria and early-onset hepatocellular carcinoma. The mechanism of DNA-mediated activation of SPRTN is not understood. Here, we report the crystal structure of the human SPRTN SprT domain bound to single-stranded DNA (ssDNA). Our structure reveals a Zn-binding sub-domain (...

Structural and Functional Analysis of the CAPS SNARE-Binding Domain Required for SNARE Complex Formation and Exocytosis.

Exocytosis of synaptic vesicles and dense-core vesicles requires both the Munc13 and CAPS (Ca-dependent activator proteins for secretion) proteins. CAPS contains a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-binding region (called the DAMH domain), which has been found to be essential for SNARE-mediated exocytosis. Here we report a crystal structure of the CAPS-1 DAMH domain at 2.9-Å resolution and reveal a dual role of CAPS-1 in SNARE complex formation. CAPS-1 plays an in...

Structural Basis for Neutralization and Protection by a Zika Virus-Specific Human Antibody.

We previously reported a human monoclonal antibody, ZK2B10, capable of protection against Zika virus (ZIKV) infection and microcephaly in developing mouse embryos. Here, we report the structural features and mechanism of action of ZK2B10. The crystal structure at a resolution of 2.32 Å revealed that the epitope is located on the lateral ridge of DIII of the envelope glycoprotein. Cryo-EM structure with mature ZIKV showed that the antibody binds to DIIIs around the icosahedral 2-fold, 3-fold, and 5-fold a...

Cytoskeletal Control of Antigen-Dependent T Cell Activation.

Cytoskeletal actin dynamics is essential for T cell activation. Here, we show evidence that the binding kinetics of the antigen engaging the T cell receptor influences the nanoscale actin organization and mechanics of the immune synapse. Using an engineered T cell system expressing a specific T cell receptor and stimulated by a range of antigens, we found that the peak force experienced by the T cell receptor during activation was independent of the unbinding kinetics of the stimulating antigen. Conver...

Chlamydia trachomatis CT229 Subverts Rab GTPase-Dependent CCV Trafficking Pathways to Promote Chlamydial Infection.

Chlamydial infection requires the formation of a membrane-bound vacuole, termed the inclusion, that undergoes extensive interactions with select host organelles. The importance of the Inc protein CT229 in the formation and maintenance of the chlamydial inclusion was recently highlighted by studies demonstrating that its absence during infection results in reduced bacterial replication, premature inclusion lysis, and host cell death. Previous reports have indicated that CT229 binds Rab GTPases; however, the ...

Alterations in Phosphorylation of Hepatocyte Ribosomal Protein S6 Control Plasmodium Liver Stage Infection.

Plasmodium parasites are highly selective when infecting hepatocytes and induce many changes within the host cell upon infection. While several host cell factors have been identified that are important for liver infection, our understanding of what facilitates the maintenance of infection remains incomplete. Here, we describe a role for phosphorylated ribosomal protein S6 (Ser235/236) (p-RPS6) in Plasmodium yoelii-infected hepatocytes. Blocking RPS6 phosphorylation prior to infection decreases the number of...

Sequential Ubiquitination of Ribosomal Protein uS3 Triggers the Degradation of Non-functional 18S rRNA.

18S non-functional rRNA decay (NRD) eliminates non-functional 18S rRNA with deleterious mutations in the decoding center. Dissociation of the non-functional 80S ribosome into 40S and 60S subunits is a prerequisite step for degradation of the non-functional 18S rRNA. However, the mechanisms by which the non-functional ribosome is recognized and dissociated into subunits remain elusive. Here, we report that the sequential ubiquitination of non-functional ribosomes is crucial for subunit dissociation. 18S NRD...

Oxidative Stress Triggers Selective tRNA Retrograde Transport in Human Cells during the Integrated Stress Response.

In eukaryotes, tRNAs are transcribed in the nucleus and exported to the cytosol, where they deliver amino acids to ribosomes for protein translation. This nuclear-cytoplasmic movement was believed to be unidirectional. However, active shuttling of tRNAs, named tRNA retrograde transport, between the cytosol and nucleus has been discovered. This pathway is conserved in eukaryotes, suggesting a fundamental function; however, little is known about its role in human cells. Here we report that, in human cells, ox...

Multi-dimensional Transcriptional Remodeling by Physiological Insulin In Vivo.

Regulation of gene expression is an important aspect of insulin action but in vivo is intertwined with changing levels of glucose and counter-regulatory hormones. Here we demonstrate that under euglycemic clamp conditions, physiological levels of insulin regulate interrelated networks of more than 1,000 transcripts in muscle and liver. These include expected pathways related to glucose and lipid utilization, mitochondrial function, and autophagy, as well as unexpected pathways, such as chromatin remodeling...

Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals.

Circular RNAs (circRNAs) are emerging as essential regulators of various biological and disease processes. To comprehensively understand the diversity of circRNAs and prioritize their importance, we present a large-scale study of circRNA repertoires from multiple tissues from human, macaque, and mouse. We discovered totals of 104,388, 96,675, and 82,321 circRNAs from the three species, respectively, with an average of 72.6% being successfully assembled into full-length transcripts for each species. Using th...

Dependency of the Cancer-Specific Transcriptional Regulation Circuitry on the Promoter DNA Methylome.

Dynamic dysregulation of the promoter DNA methylome is a signature of cancer. However, comprehensive understandings about how the DNA methylome is incorporated in the transcriptional regulation circuitry and involved in regulating the gene expression abnormality in cancers are still missing. We introduce an integrative analysis pipeline based on mutual information theory and tailored for the multi-omics profiling data in The Cancer Genome Atlas (TCGA) to systematically find dependencies of transcriptional r...


Advertisement
Quick Search
Advertisement
Advertisement