PubMed Journal Database | Infectious Disease Modelling RSS

17:08 EDT 23rd March 2019 | BioPortfolio

The US National Library of Medicine and National Institutes of Health manage which comprises of more than 29 million records, papers, reports for biomedical literature, including MEDLINE, life science and medical journals, articles, reviews, reports and  books.

BioPortfolio aims to cross reference relevant information on published papers, clinical trials and news associated with selected topics - speciality.

For example view all recent relevant publications on Epigenetics and associated publications and clincial trials.

Showing PubMed Articles, all 12 from Infectious Disease Modelling

Climate variability and infectious diseases nexus: Evidence from Sweden.

Many studies on the link between climate variability and infectious diseases are based on biophysical experiments, do not account for socio-economic factors and with little focus on developed countries. This study examines the effect of climate variability and socio-economic variables on infectious diseases using data from all 21 Swedish counties. Employing static and dynamic modelling frameworks, we observe that temperature has a linear negative effect on the number of patients. The relationship between wi...

Spatio-temporal spread of infectious pathogens of humans.

Spatio-temporal aspects in the propagation of infectious pathogens of humans are reviewed. Mathematical modelling of these issues using models is presented.

Modeling Lyme disease transmission.

Lyme disease, a typical tick-borne disease, imposes increasing global public health challenges. A growing body of theoretical models have been proposed to better understand various factors determining the disease risk, which not only enrich our understanding on the ecological cycle of disease transmission but also promote new theoretical developments on model formulation, analysis and simulation. In this paper, we provide a review about the models and results we have obtained recently on modeling and analyz...

Mathematical model of Zika virus with vertical transmission.

Zika is a flavivirus transmitted to humans through either the bites of infected mosquitoes or sexual transmission. Zika has been linked to congenital anomalies such as microcephaly. In this paper, we analyze a new system of ordinary differential equations which incorporates human vertical transmission of Zika virus, the birth of babies with microcephaly and asymptomatically infected individuals. The Zika model is locally and globally asymptotically stable when the is less than unity. Our model shows that ...

A primer on stable parameter estimation and forecasting in epidemiology by a problem-oriented regularized least squares algorithm.

Public health officials are increasingly recognizing the need to develop disease-forecasting systems to respond to epidemic and pandemic outbreaks. For instance, simple epidemic models relying on a small number of parameters can play an important role in characterizing epidemic growth and generating short-term epidemic forecasts. In the absence of reliable information about transmission mechanisms of emerging infectious diseases, phenomenological models are useful to characterize epidemic growth patterns wi...

Spatiotemporal epidemic models for rabies among animals.

Rabies is a serious concern to public health and wildlife management worldwide. Over the last three decades, various mathematical models have been proposed to study the transmission dynamics of rabies. In this paper we provide a mini-review on some reaction-diffusion models describing the spatial spread of rabies among animals. More specifically, we introduce the susceptible-exposed-infectious models for the spatial transmission of rabies among foxes (Murray et al., 1986), the spatiotemporal epidemic model...

Reproduction numbers of infectious disease models.

This primer article focuses on the basic reproduction number, , for infectious diseases, and other reproduction numbers related to that are useful in guiding control strategies. Beginning with a simple population model, the concept is developed for a threshold value of determining whether or not the disease dies out. The next generation matrix method of calculating in a compartmental model is described and illustrated. To address control strategies, type and target reproduction numbers are defined, as w...

A new epidemic modeling approach: Multi-regions discrete-time model with travel-blocking vicinity optimal control strategy.

First, we devise in this paper, a multi-regions discrete-time model which describes the spatial-temporal spread of an epidemic which starts from one region and enters to regions which are connected with their neighbors by any kind of anthropological movement. We suppose homogeneous Susceptible-Infected-Removed (SIR) populations, and we consider in our simulations, a grid of colored cells, which represents the whole domain affected by the epidemic while each cell can represent a sub-domain or region. Second,...

Modeling the role of public health education in Ebola virus disease outbreaks in Sudan.

Public involvement in Ebola Virus Disease (EVD) prevention efforts is key to reducing disease outbreaks. Targeted education through practical health information to particular groups and sub-populations is crucial to controlling the disease. In this paper, we study the dynamics of Ebola virus disease in the presence of public health education with the aim of assessing the role of behavior change induced by health education to the dynamics of an outbreak. The power of behavior change is evident in two outbrea...

National assessment of Canadian pandemic preparedness: Employing InFluNet to identify high-risk areas for inter-wave vaccine distribution.

Influenza pandemics emerge at irregular and unpredictable intervals to cause substantial health, economic and social burdens. Optimizing health-system response is vital to mitigating the consequences of future pandemics.

How heterogeneous susceptibility and recovery rates affect the spread of epidemics on networks.

In this paper, an extended heterogeneous SIR model is proposed, which generalizes the heterogeneous mean-field theory. Different from the traditional heterogeneous mean-field model only taking into account the heterogeneity of degree, our model considers not only the heterogeneity of degree but also the heterogeneity of susceptibility and recovery rates. Then, we analytically study the basic reproductive number and the final epidemic size. Combining with numerical simulations, it is found that the basic rep...

Pair formation models for sexually transmitted infections: A primer.

For modelling sexually transmitted infections, duration of partnerships can strongly influence the transmission dynamics of the infection. If partnerships are monogamous, pairs of susceptible individuals are protected from becoming infected, while pairs of infected individuals delay onward transmission of the infection as long as they persist. In addition, for curable infections re-infection from an infected partner may occur. Furthermore, interventions based on contact tracing rely on the possibility of id...

Quick Search