Advertisement

Topics

PubMed Journal Database | Integrative and comparative biology RSS

01:32 EDT 20th June 2019 | BioPortfolio

The US National Library of Medicine and National Institutes of Health manage PubMed.gov which comprises of more than 29 million records, papers, reports for biomedical literature, including MEDLINE, life science and medical journals, articles, reviews, reports and  books.

BioPortfolio aims to cross reference relevant information on published papers, clinical trials and news associated with selected topics - speciality.

For example view all recent relevant publications on Epigenetics and associated publications and clincial trials.

Showing PubMed Articles 1–25 of 149 from Integrative and comparative biology

Do Coral Reefs Promote Morphological Diversification? Exploration of Habitat Effects on Labrid Pharyngeal Jaw Evolution in the Era of Big Data.

Coral reefs are complex marine habitats that have been hypothesized to facilitate functional specialization and increased rates of functional and morphological evolution. Wrasses (Labridae: Percomorpha) in particular, have diversified extensively in these coral reef environments and have evolved adaptations to further exploit reef-specific resources. Prior studies have found that reef-dwelling wrasses exhibit higher rates of functional evolution, leading to higher functional variation than in non-reef dwell...

Integration and the Developmental Genetics of Allometry.

Allometry refers to the ways in which organismal shape is associated with size. It is a special case of integration, or the tendency for traits to covary, in that variation in size is ubiquitous and evolutionarily important. Allometric variation is so commonly observed that it is routinely removed from morphometric analyses or invoked as an explanation for evolutionary change. In this case, familiarity is mistaken for understanding because rarely do we know the mechanisms by which shape correlates with size...

Extending the Geometric Approach for Studying Biomechanical Motions.

Whether it is swimming, walking, eating, or jumping, motions are a fundamental way in which organisms interact with their environment. Understanding how morphology contributes to motion is a primary focus of kinematic research and is necessary for gaining insights into the evolution of functional systems. However, an element that is largely missing from traditional analyses of motion is the spatial context in which they occur. We explore an application of geometric morphometrics (GM) for analyzing and compa...

Evolution of, and via, developmental plasticity: insights through the study of scaling relationships.

Scaling relationships emerge from differential growth of body parts relative to each other. As such, scaling relationships are at least in part the product of developmental plasticity. While some of the developmental genetic mechanisms underlying scaling relationships are starting to be elucidated, how these mechanisms evolve and give rise to the enormous diversity of allometric scaling observed in nature is less understood. Furthermore, developmental plasticity has itself been proposed as a mechanism that ...

Compliant substrates disrupt elastic energy storage in jumping tree frogs.

Arboreal frogs navigate complex environments and face diverse mechanical properties within their physical environment. Such frogs may encounter substrates that are damped and absorb energy or are elastic and can store and release energy as the animal pushes off during take-off. When dealing with a compliant substrate, a well-coordinated jump would allow for the recovery of elastic energy stored in the substrate to amplify mechanical power, effectively adding an in-series spring to the hindlimbs. We tested t...

When does form reflect function? Acknowledging and supporting ecomorphological assumptions.

Ecomorphology is the study of relationships between organismal morphology and ecology. As such, it is the only way to determine if morphometric data can be used as an informative proxy for ecological variables of interest. To achieve this goal, ecomorphology often depends on, or directly tests, assumptions about the nature of the relationships among morphology, performance and ecology. We discuss three approaches to the study of ecomorphology: morphometry-driven, function-driven, and ecology-driven and stud...

Is amphistomy an adaptation to high light? Optimality models of stomatal traits along light gradients.

Stomata regulate the supply of CO2 for photosynthesis and the rate of water loss out of the leaf. The presence of stomata on both leaf surfaces, termed amphistomy, increases photosynthetic rate, is common in plants from high light habitats, and rare otherwise. In this study I use optimality models based on leaf energy budget and photosynthetic models to ask why amphistomy is common in high light habitats. I developed an R package leafoptimizer to solve for stomatal traits that optimally balance carbon gain ...

Not as clear as it may appear: Challenges associated with transparent camouflage in the ocean.

The 'superpower' of invisibility is a reality and a necessity for many animals that live in featureless environments like the open ocean, where there is nowhere to hide. How do animals achieve invisibility? Many animals match their color patterns to their background, but this strategy is limited when the background scene is dynamic. Transparency allows organisms to match any background all the time. However, it is challenging for an organism to maintain transparency across its entire body volume. To be tran...

Variation in immune defense shapes disease outcomes in laboratory and wild Daphnia.

Host susceptibility may be critical for the spread of infectious disease, and understanding its basis is a goal of ecological immunology. Here, we employed a series of mechanistic tests to evaluate four factors commonly assumed to influence host susceptibility: parasite exposure, barriers to infection, immune responses, and body size. We tested these factors in an aquatic host-parasite system (Daphnia dentifera and the fungal parasite, Metschnikowia bicuspidata) using both laboratory-reared and field-collec...

Reproductive ontogeny and the evolution of morphological diversity in conifers and other plants.

Biologists often study morphological evolution through form and function relationships. But biological structures can perform multiple functional roles, complicating efforts to understand the evolutionary significance of any one relationship. Plant reproductive organs perform multiple roles in a sequence, however, which provides a unique opportunity to understand how structures evolve to meet multiple functional demands. Using conifers as a study group, we discuss how a shared developmental trajectory links...

Taking a stab at quantifying the energetics of biological puncture.

An organism's ability to control the timing and direction of energy flow both within its body and out to the surrounding environment is vital to maintaining proper function. When physically interacting with an external target, the mechanical energy applied by the organism can be transferred to the target as several types of output energy, such as target deformation, target fracture, or as a transfer of momentum. The particular function being performed will dictate which of these results is most adaptive to ...

Fundamental flaws with the fundamental niche.

For more than 70 years, Hutchinson's concept of the fundamental niche has guided ecological research. Hutchinson envisioned the niche as a multidimensional hypervolume relating the fitness of an organism to relevant environmental factors. Here, we challenge the utility of the concept to modern ecologists, based on its inability to account for environmental variation and phenotypic plasticity. We have ample evidence that the frequency, duration, and sequence of abiotic stress influence the survivorship and p...

Combing transcriptomes for secrets of deep-sea survival: Environmental diversity drives patterns of protein evolution.

Ctenophores, also known as comb jellies, live across extremely broad ranges of temperature and hydrostatic pressure in the ocean. Because various ctenophore lineages adapted independently to similar environmental conditions, Phylum Ctenophora is an ideal system for the study of protein adaptation to extreme environments in a comparative framework. We present such a study here, using a phylogenetically-informed method to compare sequences of four essential metabolic enzymes across gradients of habitat depth ...

Exploring the role of insulin signaling in relative growth: a case study on wing-body scaling in Lepidoptera.

Adult forms emerge from the relative growth of the body and its parts. Each appendage and organ have a unique pattern of growth that influences the size and shape it attains. This produces adult size relationships referred to as static allometries, which have received a great amount of attention in evolutionary and developmental biology. However, many questions remain unanswered, e.g. What sorts of developmental processes coordinate growth? And how do these processes change given variation in body size? It ...

What Does Tolerance Mean for Animal Disease Dynamics When Pathology Enhances Transmission?

Host competence, or how well an individual transmits pathogens, varies substantially within and among animal populations. As this variation can alter the course of epidemics and epizootics, revealing its underlying causes will help predict and control the spread of disease. One host trait that could drive heterogeneity in competence is host tolerance, which minimizes fitness losses during infection without decreasing pathogen load. In many cases, tolerance should increase competence by extending infectious ...

The Evolutionary Dynamics of Mechanically Complex Systems.

Animals use a diverse array of motion to feed, escape predators, and reproduce. Linking morphology, performance, and fitness is a foundational paradigm in organismal biology and evolution. Yet, the influence of mechanical relationships on evolutionary diversity remains unresolved. Here, I focus on the many-to-one mapping of form to function, a widespread, emergent property of many mechanical systems in nature, and discuss how mechanical redundancy influences the tempo and mode of phenotypic evolution. By su...

Endocrine disruption alters developmental energy allocation and performance in Rana temporaria.

Environmental change exposes wildlife to a wide array of environmental stressors that arise from both anthropogenic and natural sources. Many environmental stressors with the ability to alter endocrine function are known as endocrine disruptors, which may impair the hypothalamus-pituitary-thyroid axis resulting in physiological consequences to wildlife. In this study, we investigated how the alteration of thyroid hormone (TH) levels due to exposure to the environmentally relevant endocrine disruptor sodium ...

The devil is in the details: identifying aspects of temperature variation that underlie sex determination in species with TSD.

Most organisms experience thermal variability in their environment; however, our understanding of how organisms cope with this variation is under-developed. For example, in organisms with temperature-dependent sex determination (TSD), an inability to predict sex ratios under fluctuating incubation temperatures in the field hinders predictions of how species with TSD will fare in a changing climate. To better understand how sex determination is affected by thermal variation, we incubated Trachemys scripta eg...

Mitochondria and the origin of species: bridging genetic and ecological perspectives on speciation processes.

Mitochondria have been known to be involved in speciation through the generation of Dobzhansky-Muller incompatibilities, where functionally neutral co-evolution between mitochondrial and nuclear genomes can cause dysfunction when alleles are recombined in hybrids. We propose that adaptive mitochondrial divergence between populations can not only produce intrinsic (Dobzhansky-Muller) incompatibilities, but could also contribute to reproductive isolation through natural and sexual selection against migrants, ...

Functional coupling in the evolution of suction feeding and gill ventilation of sculpins (Perciformes: Cottoidei).

Suction feeding and gill ventilation in teleosts are functionally coupled, meaning that there is an overlap in the structures involved with both functions. Functional coupling is one type of morphological integration, a term that broadly refers to any covariation, correlation, or coordination among structures. Suction feeding and gill ventilation exhibit other types of morphological integration, including functional coordination (a tendency of structures to work together to perform a function) and evolution...

Effects of Digit Orientation on Gecko Adhesive Force Capacity: Synthetic and Behavioral Studies.

In this study we developed an analytical relationship between adhesive digit orientation and adhesive force capacity to describe the tendencies of climbing organisms that use adhesion for climbing to align their toes in the direction of loading, maximizing adhesive force capacity. We fabricated a multi-component adhesive device with multiple contact surfaces, or digits, to act as a model system mimicking the angular motion of a foot and found the synthetic experiments agree with the developed analytical rel...

Sexually antagonistic mitonuclear coevolution in duplicate oxidative phosphorylation genes.

Mitochondrial function is critical in eukaryotes. To maintain an adequate supply of energy, precise interactions must be maintained between nuclear- and mitochondrial-encoded gene products. Such interactions are paramount in chimeric enzymes such as the oxidative phosphorylation (OXPHOS) complexes. Mutualistic coevolution between the two genomes has therefore been suggested to be a critical, ubiquitous feature of eukaryotes that acts to maintain cellular function. However, mitochondrial genomes can also act...

The fine-scale landscape of immunity and parasitism in a wild ungulate population.

Spatial heterogeneity in parasite susceptibility and exposure is a common source of confounding variation in disease ecology studies. However, it is not known whether spatial autocorrelation acts on immunity at small scales, within wild animal populations, and whether this predicts spatial patterns in infection. Here we used a well-mixed wild population of individually recognised red deer (Cervus elaphus) inhabiting a heterogeneous landscape to investigate fine-scale spatial patterns of immunity and parasit...

Chemical ecology of marine sponges: new opportunities through "-omics".

The chemical ecology and chemical defenses of sponges have been investigated for decades; consequently, sponges are among the best understood marine organisms in terms of their chemical ecology, from the level of molecules to ecosystems. Thousands of natural products have been isolated and characterized from sponges, and although relatively few of these compounds have been studied for their ecological functions, some are known to serve as chemical defenses against predators, microorganisms, fouling organism...

Gecko Adhesion in Space and Time: A Phylogenetic Perspective on the Scansorial Success Story.

An evolutionary perspective on gecko adhesion was previously hampered by a lack of an explicit phylogeny for the group and of robust comparative methods to study trait evolution, an underappreciation for the taxonomic and structural diversity of geckos, and a dearth of fossil evidence bearing directly on the origin of the scansorial apparatus. With a multigene dataset as the basis for a comprehensive gekkotan phylogeny, model-based methods have recently been employed to estimate the number of unique derivat...


Advertisement
Quick Search
Advertisement
Advertisement