Advertisement

Topics

PubMed Journal Database | Journal of biomedical materials research. Part B, Applied biomaterials RSS

15:21 EDT 16th June 2019 | BioPortfolio

The US National Library of Medicine and National Institutes of Health manage PubMed.gov which comprises of more than 29 million records, papers, reports for biomedical literature, including MEDLINE, life science and medical journals, articles, reviews, reports and  books.

BioPortfolio aims to cross reference relevant information on published papers, clinical trials and news associated with selected topics - speciality.

For example view all recent relevant publications on Epigenetics and associated publications and clincial trials.

Showing PubMed Articles 1–25 of 328 from Journal of biomedical materials research. Part B, Applied biomaterials

Trilayer scaffold with cardiosphere-derived cells for heart valve tissue engineering.

Natural polymers collagen, glycosaminoglycans, and elastin are promising candidate materials for heart valve tissue engineering scaffolds. This work produced trilayer scaffolds that resembled the layered structures of the extracellular matrices of native heart valves. The scaffolds showed anisotropic bending moduli (in both dry and hydrated statuses) depending on the loading directions (lower in the With Curvature direction than in the Against Curvature direction), which mimicked the characteristic behavior...

Characterization of ageing resistant transparent nanocrystalline yttria-stabilized zirconia implants.

The "Window to the Brain" is a transparent cranial implant under development, based on nanocrystalline yttria-stabilized zirconia (nc-YSZ) transparent ceramic material. Previous work has demonstrated the feasibility of this material to facilitate brain imaging over time, but the long-term stability of the material over decades in the body is unknown. In this study, the low-temperature degradation (LTD) of nc-YSZ of 3, 6, and 8 mol % yttria is compared before and after accelerated ageing treatments following...

The effect of MgO/TiO on structural and crystallization behavior of near invert phosphate-based glasses.

Varying formulations in the glass system of 40P O ─(24 - x)MgO─(16 + x)CaO─(20 - y)Na O─yTiO (where 0 ≤ x ≤ 22 and y = 0 or 1) were prepared via melt-quenching. The structure of the glasses was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR), micro Raman and solid-state nuclear magnetic resonance (NMR) spectroscopies. The thermal properties and the activation energy of crystallization (E ) were measured using thermal analysis and the Kissinger equation...

In vitro toxicity assessment of hydrogel patches obtained by cation-induced cross-linking of rod-like cellulose nanocrystals.

With the purpose of designing active patches for photodynamic therapy of melanoma, transparent and soft hydrogel membranes (HMs) have been fabricated by cation-induced gelation of rod-like cellulose nanocrystals (CNCs) bearing negatively charged carboxylic groups. Na , Ca , Mg have been used as cross-linkers of cellulose nanocrystal (CNC). The biosafety of this material and of its precursors has been evaluated in vitro in cell cultures. Morphological changes, cell organelles integrity, and cell survival wit...

Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti-Nb-based alloys for bone implants.

Metastable near-beta Ti-21.8Nb-6Zr and Ti-19.7Nb-5.8Ta (at%) alloys were subjected to a thermomechanical treatment comprising cold rolling (CR) with a true strain of e = 0.3 and post-deformation annealing (PDA) in the 500-900°C temperature range to ensure the superelastic behavior which is important for bone implants. It was found that PDA resulted in formation of about 1-2 μm-thick oxide layer on the Ti-Nb-Zr and Ti-Nb-Ta alloy samples; the layer was mainly composed of TiO , in rutile and anatase modific...

Taguchi's methods to optimize the properties and bioactivity of 3D printed polycaprolactone/mineral trioxide aggregate scaffold: Theoretical predictions and experimental validation.

Mineral trioxide aggregate (MTA) can provide bioactivity to poly-caprolactone (PCL), which is an inert polymer used to print scaffolds. However, testing all combinations of scaffold characteristics (e.g., composition, pore size, and distribution) to optimize properties of scaffolds is time-consuming and costly. The Taguchi's methods can identify characteristics that have major influences on the properties of complex designs, hence decreasing the number of combinations to be tested. The objective was to asse...

A carboxymethyl cellulose bone graft carrier delays early bone healing in an ovine model.

A limitation in the use of calcium phosphate (CaP) is that in its raw form, it comprises blocks or granules, which are limited in their utility for orthopedic surgery and a number of commercial bone grafts are supplied within an aqueous based carboxymethyl cellulose (CMC) putty. Our hypothesis was that CMC combined with a porous silicate-substituted CaP (SiCaP) scaffold would have no negative effect on bone formation after implantation in an ovine femoral condyle. Defects were either (a) empty or filled wit...

Fourier transform infrared spectroscopic imaging of wear and corrosion products within joint capsule tissue from total hip replacements patients.

Implant debris generated by wear and corrosion is a prominent cause of joint replacement failure. This study utilized Fourier transform infrared spectroscopic imaging (FTIR-I) to gain a better understanding of the chemical structure of implant debris and its impact on the surrounding biological environment. Therefore, retrieved joint capsule tissue from five total hip replacement patients was analyzed. All five cases presented different implant designs and histopathological patterns. All tissue samples were...

Magnetic resonance imaging and photothermal conversion properties of Gd-C nanocomposites for interstitial lymphography.

Dual-functional agents for magnetic resonance imaging (MRI) guided photothermal therapy (PTT) of lymph cancer are highly desired. Signal enhancement, selectivity between lymphatic nodes/vessels and blood vessels, and photothermal conversion property are the criteria for such dual-functional agent. In the current work, we demonstrated the potential of Gd-C nanocomposites as dual-functional agents for the MRI and PTT of lymph node cancer. Gd-C nanocomposites were synthesized via a hydrothermal carbonization a...

Vegetable hierarchical structures as template for bone regeneration: New bio-ceramization process for the development of a bone scaffold applied to an experimental sheep model.

Long bone defects still represent a major clinical challenge in orthopedics, with the inherent loss of function considerably impairing the quality of life of the affected patients. Thus, the purpose of this study was to assess the safety and potential of bone regeneration offered by a load-bearing scaffold characterized by unique hierarchical architecture and high strength, with active surface facilitating new bone penetration and osseointegration in critical size bone defects. The results of this study sho...

Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat.

Application of hydrogels can be an effective technique in transferring the adipose-derived stem cells (ASCs) to injured tissue and their protection from further complications. Besides, acellular dermal matrix (ADM) has successfully been used in treatment of wounds. In this study, a combination of hylauronic acid (HA) and ASCs (HA/ASCs) was applied on burn wounds and the injured area was then covered by an ADM dressing in a rat model (ADM-HA/ASCs). Wound healing was evaluated by histopathological, histomorph...

Epidermal growth factor receptor genes are overexpressed within the periprosthetic soft-tissue around percutaneous devices: A pilot study.

Epidermal downgrowth around percutaneous devices produce sinus tracts, which then accumulate bacteria becoming foci of infection. This mode to failure is epidermal-centric, and is accelerated by changes in the chemokines and cytokines of the underlying periprosthetic granulation tissue (GT). In order to more fully comprehend the mechanism of downgrowth, in this 28-day study, percutaneous devices were placed in 10 Zucker diabetic fatty rats; 5 animals were induced with diabetes mellitus II (DM II) prior to t...

Ex vivo pregnant-like tissue model to assess injectable hydrogel for preterm birth prevention.

Cervical insufficiency (CI) is an important cause of preterm birth, which leads to severe newborn complications. Standard treatment for CI is cerclage, which has variable success rates, resulting in a clinical need for alternative treatments. Our objective was to develop an ex vivo model of softened cervical tissue to study an injectable silk-based hydrogel as a novel alternative treatment for CI. Cervical tissue from nonpregnant women was enzymatically treated and characterized to determine tissue hydratio...

Comparing the release of erythromycin and vancomycin from calcium polyphosphate hydrogel using different drug loading methods.

Calcium polyphosphate (CPP) hydrogel is used to load erythromycin (EM) and vancomycin (VCM) by means of two loading methods: they are either added directly to the formed CPP hydrogel (Gel Mixture method) or mixed with CPP powders, followed by the formation of CPP-antibiotic hydrogel (Powder Mixture method). The release of loaded antibiotics from CPP hydrogel is measured up to 48 hr. Compared to Powder Mixture method, Gel Mixture method significantly reduced the burst release of embedded antibiotics. A sig...

Bioadhesive and biodissolvable hydrogels consisting of water-swellable poly(acrylic acid)/poly(vinylpyrrolidone) complexes.

Films that can form bioadhesive hydrogels on wet biotissues absorbing blood or body fluids are useful for medical devices such as hemostats, adhesion barriers, wound dressings, and drug release devices. We focused on a hydrogen-bonding polymer complex consisting of poly(acrylic acid) (PAA) and poly(vinylpyrrolidone) (PVP). PAA is known as a tissue-adhesive polymer. However, simple mixing of aqueous PAA and PVP solutions resulted in the formation of an insoluble nonadhesive precipitate. We developed a novel ...

Enhanced fully cellulose based forward and reverse blood typing assay.

This study presents an enhanced paper-based analytical device (PAD) for forward and reverse group blood typing. The proposed PAD uses a novel methodology, which provides highly reliable results on a fully cellulose based device. The PAD was printed on different cellulose substrates. These substrates were made of different cellulose fibers (sisal and eucalyptus), different grammages, refining steps, and wet additive content. Best parameters were chosen to achieve high reliability on both forward and reverse ...

Effective control of biofilms by photothermal therapy using a gold nanorod hydrogel.

Biofilms are matrices synthesized by bacteria containing polysaccharides, DNA, and proteins. The development of biofilms in infectious processes can induce a chronic inflammatory response that may progress to the destruction of tissues. The treatment of biofilms is difficult because they serve as a bacterial mechanism of defense and high doses of antibiotics are necessary to treat these infections with limited positive results. It has been demonstrated that photothermal therapy using gold nanorods (AuNRs) i...

Effective delivery of mitomycin-C and meloxicam by double-layer electrospun membranes for the prevention of epidural adhesions.

Epidural adhesion between the spinal dura and the surrounding fibrous tissue often occurs post-laminectomy, resulting in clinical symptoms such as nerve compression and severe pain. In this study, we report a drug-loaded double-layered electrospun nanofiber membrane to prevent the occurrence of epidural adhesion. The nanofibers in both layers are made of a mixture of polycaprolactone (PCL) and chitosan (CS) but at different weight ratios. The bottom layer contacting to the spinal dura is loaded with meloxic...

Mathematical predictions of oxygen availability in micro- and macro-encapsulated human and porcine pancreatic islets.

Optimal function of immunoisolated islets requires adequate supply of oxygen to metabolically active insulin producing beta-cells. Using mathematical modeling, we investigated the influence of the pO on islet insulin secretory capacity and evaluated conditions that could lead to the development of tissue anoxia, modeled for a 300 μm islet in a 500 μm microcapsule or a 500 μm planar, slab-shaped macrocapsule. The pO was used to assess the part of islets that contributed to insulin secretion. Assumin...

The optimization of sintering treatment on bovine-derived bone grafts for bone regeneration: in vitro and in vivo evaluation.

Modifications of sintering temperature and treatment time of bovine-derived bone grafts affect their physicochemical properties and further influence biological activity. Three different temperature sintered bovine-derived bone grafts: group I (300 °C 3 h), group II (300 °C 3 h plus 530 °C 6 h), and group III (300 °C 3 h plus 1000 °C 2 h) and Bio-Oss® were characterized and then compared in vitro for their effects on bone marrow stromal cells (BMSCs) migration, proliferation, and differentiation as es...

A foldable manipulator with tunable stiffness based on braided structure.

Minimally invasive surgery (MIS) has recently seen a surge in clinical applications due to its potential benefits over open surgery. In MIS, a long manipulator is placed through a tortuous human orifice to create a channel for surgical tools and provide support when they are operated. Currently the relative large profile and low stiffness of the manipulators limit the effectiveness and accuracy of MIS. Here we propose a new foldable manipulator with tunable stiffness. The manipulator takes a braided skeleto...

In vitro and in vivo assessment of CaP materials for bone regenerative therapy. The role of multinucleated giant cells/osteoclasts in bone regeneration.

In this work, bone formation/remodeling/maturation was correlated with the presence of multinucleated giant cells (MGCs)/osteoclasts (tartrate-resistant acid phosphatase [TRAP]-positive cells) on the surface of beta-tricalcium phosphate (β-TCP), sintered deproteinized bovine bone (sDBB), and carbonated deproteinized bovine bone (cDBB) using a maxillary sinus augmentation (MSA) in a New Zealand rabbit model. Microtomographic, histomorphometric, and immunolabeling for TRAP-cells analyses were made at 15, 30,...

Differential response of human blood leukocytes to brushite, monetite, and calcium polyphosphate biomaterials.

Calcium phosphate-based biomaterials are extensively used for bone replacement and regeneration in orthopedic, dental, and maxillofacial surgical applications. The injury induced by surgical implantation of bone replacement graft materials initiates a cascade of host responses, starting with blood-biomaterial contact, protein adsorption on the material surface, blood coagulation, and leukocyte responses. During the initial acute inflammatory response, polymorphonuclear neutrophils (PMNs) and monocytes, abun...

First clinical application of octacalcium phosphate collagen composite on bone regeneration in maxillary sinus floor augmentation: A prospective, single-arm, open-label clinical trial.

The overall objective of this study was to assess the safety and efficacy of OCP/Col as a bone substitute material for bone regeneration during sinus floor augmentation. Maxillary sinus floor augmentation was performed thorough lateral window approach. According to the height of host bone, simultaneous approach (≥5 mm) or staged approach (less than 5 mm) was applied. In this research, clinical findings of dental implant treatment after setting the restorations were set as a primary endpoint in both approa...

Particle analysis of shape factors according to American Society for Testing and Materials.

Polyethylene wear is one of the major factors influencing the survivorship of joint replacements. Depending on the number, size and morphology of the polyethylene particles, biological responses of the periprosthetic soft tissue in terms of inflammatory processes can occur, leading to loosening of the implant. Various parameters are used to analyze wear particles, which are usually determined by examining scanning electron microscopy (SEM) images with a particle analysis program. In this study, three differ...


Advertisement
Quick Search
Advertisement
Advertisement