Advertisement

Topics

PubMed Journal Database | Medical image analysis RSS

02:06 EDT 21st March 2019 | BioPortfolio

The US National Library of Medicine and National Institutes of Health manage PubMed.gov which comprises of more than 29 million records, papers, reports for biomedical literature, including MEDLINE, life science and medical journals, articles, reviews, reports and  books.

BioPortfolio aims to cross reference relevant information on published papers, clinical trials and news associated with selected topics - speciality.

For example view all recent relevant publications on Epigenetics and associated publications and clincial trials.

Showing PubMed Articles 1–25 of 252 from Medical image analysis

Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge.

Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a t...

Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network.

As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. These images can help reveal disease-related alterations below the surface of the retina, such as the presence of edema, or accumulation of fluid which can distort vision, and are an indication of disruptions in the vasculature of the retina. In this paper, a new framework is proposed for multiclass fluid segmentation and detection in the retinal OCT images. Based on the ...

Constrained-CNN losses for weakly supervised segmentation.

Weakly-supervised learning based on, e.g., partially labelled images or image-tags, is currently attracting significant attention in CNN segmentation as it can mitigate the need for full and laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the network output (for instance, to constrain the size of the target region) can leverage unlabeled data, guiding the training process with domain-specific knowledge. Inequality constraints are very flexible because they do not a...

Optimal surface segmentation with convex priors in irregularly sampled space.

Optimal surface segmentation is a state-of-the-art method used for segmentation of multiple globally optimal surfaces in volumetric datasets. The method is widely used in numerous medical image segmentation applications. However, nodes in the graph based optimal surface segmentation method typically encode uniformly distributed orthogonal voxels of the volume. Thus the segmentation cannot attain an accuracy greater than a single unit voxel, i.e. the distance between two adjoining nodes in graph space. Segme...

Breast MRI and X-ray mammography registration using gradient values.

Breast magnetic resonance imaging (MRI) and X-ray mammography are two image modalities widely used for early detection and diagnosis of breast diseases in women. The combination of these modalities, traditionally done using intensity-based registration algorithms, leads to a more accurate diagnosis and treatment, due to the capability of co-localizing lesions and susceptibles areas between the two image modalities. In this work, we present the first attempt to register breast MRI and X-ray mammographic imag...

f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks.

Obtaining expert labels in clinical imaging is difficult since exhaustive annotation is time-consuming. Furthermore, not all possibly relevant markers may be known and sufficiently well described a priori to even guide annotation. While supervised learning yields good results if expert labeled training data is available, the visual variability, and thus the vocabulary of findings, we can detect and exploit, is limited to the annotated lesions. Here, we present fast AnoGAN (f-AnoGAN), a generative adversaria...

AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases.

Contouring (segmentation) of Organs at Risk (OARs) in medical images is required for accurate radiation therapy (RT) planning. In current clinical practice, OAR contouring is performed with low levels of automation. Although several approaches have been proposed in the literature for improving automation, it is difficult to gain an understanding of how well these methods would perform in a realistic clinical setting. This is chiefly due to three key factors - small number of patient studies used for evaluat...

An image interpolation approach for acquisition time reduction in navigator-Based 4D MRI.

Navigated 2D multi-slice dynamic Magnetic Resonance (MR) imaging enables high contrast 4D MR imaging during free breathing and provides in-vivo observations for treatment planning and guidance. Navigator slices are vital for retrospective stacking of 2D data slices in this method. However, they also prolong the acquisition sessions. Temporal interpolation of navigator slices can be used to reduce the number of navigator acquisitions without degrading specificity in stacking. In this work, we propose a convo...

Medical image classification using synergic deep learning.

The classification of medical images is an essential task in computer-aided diagnosis, medical image retrieval and mining. Although deep learning has shown proven advantages over traditional methods that rely on the handcrafted features, it remains challenging due to the significant intra-class variation and inter-class similarity caused by the diversity of imaging modalities and clinical pathologies. In this paper, we propose a synergic deep learning (SDL) model to address this issue by using multiple deep...

OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions.

Deep networks have set the state-of-the-art in most image analysis tasks by replacing handcrafted features with learned convolution filters within end-to-end trainable architectures. Still, the specifications of a convolutional network are subject to much manual design - the shape and size of the receptive field for convolutional operations is a very sensitive part that has to be tuned for different image analysis applications. 3D fully-convolutional multi-scale architectures with skip-connection that excel...

Weakly supervised mitosis detection in breast histopathology images using concentric loss.

Developing new deep learning methods for medical image analysis is a prevalent research topic in machine learning. In this paper, we propose a deep learning scheme with a novel loss function for weakly supervised breast cancer diagnosis. According to the Nottingham Grading System, mitotic count plays an important role in breast cancer diagnosis and grading. To determine the cancer grade, pathologists usually need to manually count mitosis from a great deal of histopathology images, which is a very tedious a...

Frequency-splitting dynamic MRI reconstruction using multi-scale 3D convolutional sparse coding and automatic parameter selection.

In this paper, we propose a novel image reconstruction algorithm using multi-scale 3D convolutional sparse coding and a spectral decomposition technique for highly undersampled dynamic Magnetic Resonance Imaging (MRI) data. The proposed method recovers high-frequency information using a shared 3D convolution-based dictionary built progressively during the reconstruction process in an unsupervised manner, while low-frequency information is recovered using a total variation-based energy minimization method th...

Multiple-correlation similarity for block-matching based fast CT to ultrasound registration in liver interventions.

In this work we present a fast approach to perform registration of computed tomography to ultrasound volumes for image guided intervention applications. The method is based on a combination of block-matching and outlier rejection. The block-matching uses a correlation based multimodal similarity metric, where the intensity and the gradient of the computed tomography images along with the ultrasound volumes are the input images to find correspondences between blocks in the computed tomography and the ultraso...

Iterative fully convolutional neural networks for automatic vertebra segmentation and identification.

Precise segmentation and anatomical identification of the vertebrae provides the basis for automatic analysis of the spine, such as detection of vertebral compression fractures or other abnormalities. Most dedicated spine CT and MR scans as well as scans of the chest, abdomen or neck cover only part of the spine. Segmentation and identification should therefore not rely on the visibility of certain vertebrae or a certain number of vertebrae. We propose an iterative instance segmentation approach that uses a...

Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy.

In recent years, endomicroscopy has become increasingly used for diagnostic purposes and interventional guidance. It can provide intraoperative aids for real-time tissue characterization and can help to perform visual investigations aimed for example to discover epithelial cancers. Due to physical constraints on the acquisition process, endomicroscopy images, still today have a low number of informative pixels which hampers their quality. Post-processing techniques, such as Super-Resolution (SR), are a pote...

Automatic needle detection and real-time Bi-planar needle visualization during 3D ultrasound scanning of the liver.

2D ultrasound (US) image guidance is used in minimally invasive procedures in the liver to visualize the target and the needle. Needle insertion using 2D ultrasound keeping the transducer position to view needle and reach target is challenging. Dedicated needle holders attached to the US transducer help to target in plane and at a specific angle. A drawback of this is that, the probe is fixed to the needle and cannot be rotated to assess the position of the needle in a perpendicular plane. In this study, we...

Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data.

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive impairment of memory and other cognitive functions. Currently, many multi-task learning approaches have been proposed to predict the disease progression at the early stage using longitudinal data, with each task corresponding to a particular time point. However, the underlying association among different time points in disease progression is still under-explored in previous studies. To this end, we propose a multi-task exc...

Novel and facile criterion to assess the accuracy of WSS estimation by 4D flow MRI.

Four-dimensional flow magnetic resonance imaging (4D flow MRI) is a versatile tool to obtain hemodynamic information and anatomic information simultaneously. The wall shear stress (WSS), a force exerted on a vessel wall in parallel, is one of the hemodynamic parameters available with 4D flow MRI and is thought to play an important role in clinical applications such as assessing the development of atherosclerosis. Nevertheless, the accuracy of WSS obtained with 4D flow MRI is rarely evaluated or reported in ...

Recurrent inference machines for reconstructing heterogeneous MRI data.

Deep learning allows for accelerated magnetic resonance image (MRI) reconstruction, thereby shortening measurement times. Rather than using sparsifying transforms, a prerequisite in Compressed Sensing (CS), suitable MRI prior distributions are learned from data. In clinical practice, both the underlying anatomy as well as image acquisition settings vary. For this reason, deep neural networks must be able to reapply what they learn across different measurement conditions. We propose to use Recurrent Inferenc...

Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space.

Diffusion MRI affords valuable insights into white matter microstructures, but suffers from low signal-to-noise ratio (SNR), especially at high diffusion weighting (i.e., b-value). To avoid time-intensive repeated acquisition, post-processing algorithms are often used to reduce noise. Among existing methods, non-local means (NLM) has been shown to be particularly effective. However, most NLM algorithms for diffusion MRI focus on patch matching in the spatial domain (i.e., x-space) and disregard the fact tha...

Generalised coherent point drift for group-wise multi-dimensional analysis of diffusion brain MRI data.

A probabilistic framework for registering generalised point sets comprising multiple voxel-wise data features such as positions, orientations and scalar-valued quantities, is proposed. It is employed for the analysis of magnetic resonance diffusion tensor image (DTI)-derived quantities, such as fractional anisotropy (FA) and fibre orientation, across multiple subjects. A hybrid Student's t-Watson-Gaussian mixture model-based non-rigid registration framework is formulated for the joint registration and clust...

Learning to detect chest radiographs containing pulmonary lesions using visual attention networks.

Machine learning approaches hold great potential for the automated detection of lung nodules on chest radiographs, but training algorithms requires very large amounts of manually annotated radiographs, which are difficult to obtain. The increasing availability of PACS (Picture Archiving and Communication System), is laying the technological foundations needed to make available large volumes of clinical data and images from hospital archives. Binary labels indicating whether a radiograph contains a pulmonary...

Nonrigid reconstruction of 3D breast surfaces with a low-cost RGBD camera for surgical planning and aesthetic evaluation.

Accounting for 26% of all new cancer cases worldwide, breast cancer remains the most common form of cancer in women. Although early breast cancer has a favourable long-term prognosis, roughly a third of patients suffer from a suboptimal aesthetic outcome despite breast conserving cancer treatment. Clinical-quality 3D modelling of the breast surface therefore assumes an increasingly important role in advancing treatment planning, prediction and evaluation of breast cosmesis. Yet, existing 3D torso scanners a...

Robust motion correction for cardiac T1 and ECV mapping using a T1 relaxation model approach.

T1 and ECV mapping are quantitative methods for myocardial tissue characterization using cardiac MRI, and are highly relevant for the diagnosis of diffuse myocardial diseases. Since the maps are calculated pixel-by-pixel from a set of MRI images with different T1-weighting, it is critical to assure exact spatial correspondence between these images. However, in practice, different sources of motion e.g. cardiac motion, respiratory motion or patient motion, hamper accurate T1 and ECV calculation such that ret...

Towards cross-modal organ translation and segmentation: A cycle- and shape-consistent generative adversarial network.

Synthesized medical images have several important applications. For instance, they can be used as an intermedium in cross-modality image registration or used as augmented training samples to boost the generalization capability of a classifier. In this work, we propose a generic cross-modality synthesis approach with the following targets: 1) synthesizing realistic looking 2D/3D images without needing paired training data, 2) ensuring consistent anatomical structures, which could be changed by geometric dist...


Advertisement
Quick Search
Advertisement
Advertisement