Advertisement

Topics

PubMed Journal Database | Nucleic acid therapeutics RSS

18:53 EDT 19th March 2019 | BioPortfolio

The US National Library of Medicine and National Institutes of Health manage PubMed.gov which comprises of more than 29 million records, papers, reports for biomedical literature, including MEDLINE, life science and medical journals, articles, reviews, reports and  books.

BioPortfolio aims to cross reference relevant information on published papers, clinical trials and news associated with selected topics - speciality.

For example view all recent relevant publications on Epigenetics and associated publications and clincial trials.

Showing PubMed Articles 1–25 of 72 from Nucleic acid therapeutics

G-Quadruplex Structure Improves the Immunostimulatory Effects of Cytosine-Phosphate-Guanine Oligonucleotides.

Single-strand oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine (CpG) are recognized by the toll-like receptor 9, a component of the innate immunity. Therefore, they could act as immunotherapeutic agents. Chemically modified CpG ODNs containing a phosphorothioate backbone instead of phosphodiester (PD) were developed as immunotherapeutic agents resistant to nuclease degradation. However, they cause adverse side effects, and so there is a necessity to generate novel CpG ODNs. In...

RNA Interference-Based Cancer Drugs: The Roadblocks, and the "Delivery" of the Promise.

Nucleic acid-based therapeutics like synthetic small interfering RNAs have been exploited to modulate gene function, taking advantage of RNA interference (RNAi), an evolutionally conserved biological process. Recently, the world's first RNAi drug was approved for a rare genetic disorder in the liver. However, there are significant challenges that need to be resolved before RNAi can be translated in other genetic diseases like cancer. Current drug delivery platforms for therapeutic silencing RNAs are tailore...

Fluorophore Labeling Affects the Cellular Accumulation and Gene Silencing Activity of Cholesterol-Modified Small Interfering RNAs In Vitro.

The objective of this study was to analyze the effects of fluorophores on the intracellular accumulation and biological activity of small interfering RNA (siRNA) and its cholesterol conjugates. In this study, we used stem-loop real-time PCR and calibration curves to quantitate cellular siRNA accumulation. Attachment of fluorophores significantly affected both the accumulation and biological activity of siRNA conjugates. The severity of this effect depended significantly on the structure of the conjugate; fl...

Artificial MicroRNA-Mediated Inhibition of Japanese Encephalitis Virus Replication in Neuronal Cells.

Artificial microRNA (amiRNA)-mediated inhibition of viral replication has recently gained importance as a strategy for antiviral therapy. In this study, we evaluated the benefit of using the amiRNA vector against Japanese encephalitis virus (JEV). We designed three single amiRNA sequences against the consensus sequence of 3' untranslated region (3'UTR) of JEV and tested their efficacy against cell culture-grown JEV Vellore strain (P20778) in neuronal cells. The binding ability of three amiRNAs on 3'UTR regi...

Keratinocyte Growth Factor Modified Messenger RNA Accelerating Cell Proliferation and Migration of Keratinocytes.

Keratinocyte growth factor (KGF) plays a central role in wound healing as it induces cell proliferation and motility. The use of growth factors such as KGF is therefore viewed as a promising approach in wound therapy, although effective application remains a major problem because of inactivation and the resulting short half-life of applied growth factors in wound beds. Therefore, the rational of this study was to develop and investigate an innovative strategy to improve wound healing using an in vitro-trans...

Inferring Half-Lives at the Effect Site of Oligonucleotide Drugs.

Knowledge of the kinetics of the active drug in biophase, that is, at the effect site, is fundamental to select dose and to reason about safety. Unfortunately, the kinetics is cumbersome to measure in vivo. We describe how dose-response-time (DRT) analysis estimates the biophase and the target-response half-lives from data of the circulating protein of the encoded messenger RNA for seven antisense oligonucleotides (ASOs) and four small interfering RNA (siRNA) drugs. The biophase half-lives were estimated wi...

Studies of Impending Oligonucleotide Therapeutics in Simulated Biofluids.

Synthetic oligonucleotides, their complexes and conjugates with other biomolecules represent valuable research tools and therapeutic agents. In spite of growing applications in basic research and clinical science, only few studies have addressed the issue of such compounds' stability in biological media. Herein, we studied the stability of two therapeutically relevant oligonucleotide probes in simulated biofluids; the 21 nucleotide-long DNA/locked nucleic acid oligonucleotide ON targeted toward cancer-assoc...

MicroRNAs Enable mRNA Therapeutics to Selectively Program Cancer Cells to Self-Destruct.

The advent of therapeutic mRNAs significantly increases the possibilities of protein-based biologics beyond those that can be synthesized by recombinant technologies (eg, monoclonal antibodies, extracellular enzymes, and cytokines). In addition to their application in the areas of vaccine development, immune-oncology, and protein replacement therapies, one exciting possibility is to use therapeutic mRNAs to program undesired, diseased cells to synthesize a toxic intracellular protein, causing cells to self-...

Application of 2'-O-(2-N-Methylcarbamoylethyl) Nucleotides in RNase H-Dependent Antisense Oligonucleotides.

An RNase H-dependent antisense oligonucleotide (ASO), having the 2'-O-(2-N-methylcarbamoylethyl) (MCE) modification, was evaluated in vitro and in vivo. The antisense activities of an ASO having the MCE modification were comparable with those of an ASO having the 2'-O-methoxyethyl (MOE) modification in both in vitro and in vivo experiments. In contrast, the hepatotoxic potential of the ASO having the MCE modification was lower than that of the ASO having the MOE modification. Thus, these findings suggested ...

Aptamer-Mediated Delivery and Cell-Targeting Aptamers: Room for Improvement.

Targeting cells with aptamers for the delivery of therapeutic cargoes, in particular oligonucleotides, represents one of the most exciting applications of the aptamer field. Perhaps nowhere has there been more excitement in the field than around the targeted delivery of siRNA or miRNA. However, when industry leaders in the field of siRNA delivery have tried to recapitulate aptamer-siRNA delivery results, they have failed. This problem stems from more than just the age-old problem of delivery to the cytoplas...

Current Challenges in Delivery and Cytosolic Translocation of Therapeutic RNAs.

RNA interference (RNAi) is a fundamental cellular process for the posttranscriptional regulation of gene expression. RNAi can exogenously be modulated by small RNA oligonucleotides, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), or by antisense oligonucleotides. These small oligonucleotides provided the scientific community with powerful and versatile tools to turn off the expression of genes of interest, and hold out the promise of new therapeutic solutions against a wide range of gene-ass...

GalNAc-siRNA Conjugates: Leading the Way for Delivery of RNAi Therapeutics.

Short-interfering RNA (siRNA)-induced RNAi responses have great potential to treat a wide variety of human diseases from cancer to pandemic viral outbreaks to Parkinson's Disease. However, before siRNAs can become drugs, they must overcome a billion years of evolutionary defenses designed to keep invading RNAs on the outside cells from getting to the inside of cells. Not surprisingly, significant effort has been placed in developing a wide array of delivery technologies. Foremost of these has been the devel...

RNA Therapeutics (Almost) Comes of Age: Targeting, Delivery and Endosomal Escape.

Intracellular Trafficking and Endosomal Release of Oligonucleotides: What We Know and What We Do Not.

Understanding the cellular uptake and intracellular trafficking of oligonucleotides provides an important basic underpinning for the developing field of oligonucleotide-based therapeutics. Whether delivered as "free" oligonucleotides, as ligand-oligonucleotide conjugates, or in association with various nanocarriers, all forms of oligonucleotide enter cells by endocytosis and are initially ensconced within membrane-limited vesicles. Accordingly, the locus and extent of release to the cytosol and nucleus are ...

Chronic Toxicity Assessment of 2'-O-Methoxyethyl Antisense Oligonucleotides in Mice.

Advances in antisense oligonucleotide (ASO) chemistry and screening have enabled the design and selection of molecules that are optimized for a particular therapeutic application in terms of both potency and tolerability. The most-well studied of the chemically modified ASOs are single-stranded antisense inhibitors with phosphorothioate backbones and 2'-O-methoxyethyl modifications (2'-MOE ASO). The 2'-MOE chemical modification in the design of the ASO has conferred increased hybridization affinity, increas...

Dose-Dependent Lowering of Mutant Huntingtin Using Antisense Oligonucleotides in Huntington Disease Patients.

On December 11 of 2017, Ionis Pharmaceuticals published a press release announcing dose-dependent reductions of mutant huntingtin protein in their HTTRx Phase 1/2a study in Huntington disease (HD) patients. The results from this Ionis trial have gained much attention from the patient community and the oligonucleotide therapeutics field, since it is the first trial targeting the cause of HD, namely the mutant huntingtin protein, using antisense oligonucleotides (ASOs). The press release also states that the ...

Cell-SELEX-Based Identification of a Human and Mouse Cross-Reactive Endothelial Cell-Internalizing Aptamer.

Increased interest and insights gained by researchers on the roles of endothelial cells in the pathophysiology of cancer, inflammatory, and cardiovascular diseases have led to the design of pharmacological interventions aimed at the endothelium lining in the diseased sites. Toward this end, we used established brain microvascular endothelial cell lines mouse (bEND3), human (hCMEC/D3), and Toggle Cell-SELEX to identify a species cross-reactive, endothelial cell-internalizing aptamer R11-3. This 2'F-modified ...

Journey of siRNA: Clinical Developments and Targeted Delivery.

Since the evolutionary discovery of RNA interference and its utilization for gene knockdown in mammalian cell, a remarkable progress has been achieved in small interfering RNA (siRNA) therapeutics. siRNA is a promising tool, utilized as therapeutic agent against various diseases. Despite its significant potential benefits, safe, efficient, and target oriented delivery of siRNA is one of the major challenges in siRNA therapeutics. This review covers major achievements in clinical trials and targeted delivery...

Intracerebroventricular Administration of a 2'-O-Methyl Phosphorothioate Antisense Oligonucleotide Results in Activation of the Innate Immune System in Mouse Brain.

Antisense oligonucleotides (AONs) are versatile molecules that can be used to modulate gene expression by binding to RNA. The therapeutic potential of AONs appears particularly high in the central nervous system, due to excellent distribution and uptake in brain cells, as well as good tolerability in clinical trials thus far. Nonetheless, immune stimulation in response to AON treatment in the brain remains a concern. For this reason we performed RNA sequencing analysis of brain tissue from mice treated intr...

Receptor-Mediated Uptake of Phosphorothioate Antisense Oligonucleotides in Different Cell Types of the Liver.

Oligonucleotide therapeutics have emerged as a third distinct platform for drug discovery within the pharmaceutical industry. Five oligonucleotide-based drugs have been approved by the US FDA and over 100 oligonucleotides drugs are currently at different stages of human trials. Several of these oligonucleotide drugs are modified using the phosphorothioate (PS) backbone modification where one of the nonbridging oxygen atoms of the phosphodiester linkage is replaced with sulfur. In this review, we summarize o...

Activation of Frataxin Protein Expression by Antisense Oligonucleotides Targeting the Mutant Expanded Repeat.

Friedreich's Ataxia (FA) is an inherited neurologic disorder caused by an expanded GAA repeat within intron 1 of the frataxin (FXN) gene that reduces expression of FXN protein. Agents that increase expression of FXN have the potential to alleviate the disease. We previously reported that duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) complementary to the GAA repeat could enhance expression of FXN protein. We now explore the potential of a diverse group of chemically modified dsRNAs and ASOs to d...

RNA Interference-Mediated Gene Silencing by Branched Tripodal RNAs Does Not Require Dicer Processing.

Specific gene silencing through RNA interference (RNAi) holds great promise as the next-generation therapeutic development platform. Previously, we have shown that branched, tripodal interfering RNA (tiRNA) structures could simultaneously trigger RNAi-mediated gene silencing of three target genes with 38 nt-long guide strands associated with Argonaute 2. Herein, we show that the branched RNA structure can trigger effective gene silencing in Dicer knockout cell line, demonstrating that the Dicer-mediated p...

Structural Studies and Gene Silencing Activity of siRNAs Containing Cationic Phosphoramidate Linkages.

A series of siRNA duplexes containing cationic non-bridging 3',5'-linked phosphoramidate (PN) linkages was designed and synthesized using a combination of phosphoramidite and H-phosphonate chemistries. Modified oligonucleotides were assayed for their thermal stability, helical structure, and ability to modulate the expression of firefly luciferase. We demonstrate that PN modifications of siRNAs are, in general, minimally destabilizing with respect to duplex thermal stability; destabilization can be mitigate...

Impurities in Oligonucleotide Drug Substances and Drug Products.

This white paper, which is the 10th in a series intended to address issues associated with the development of therapeutic oligonucleotides, examines the subject of product-related impurities. The authors consider chemistry and safety aspects and advance arguments in favor of platform approaches to impurity identification and qualification. Reporting, identification, and qualification thresholds suitable for product-related impurities of therapeutic oligonucleotides are proposed.

Lack of QT Prolongation for 2'-O-Methoxyethyl-Modified Antisense Oligonucleotides Based on Retrospective Exposure/Response Analysis of Ten Phase 1 Dose-Escalation Placebo-Controlled Studies in Healthy Subjects.

The potential of QT prolongation of ten 2'-O-methoxyethyl-modified (2'-MOE) antisense oligonucleotides (ASOs) was evaluated retrospectively via exposure/response (ER) analysis using data from Phase 1 clinical studies in healthy subjects. All Phase 1 studies were double-blind, placebo-controlled, single and multiple ascending dose studies designed to assess the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics of the ASOs in healthy subjects. The active doses in these studies ranged from 50 t...


Advertisement
Quick Search
Advertisement
Advertisement