Advertisement

Topics

PubMed Journal Database | Physical review letters RSS

16:07 EST 20th January 2019 | BioPortfolio

The US National Library of Medicine and National Institutes of Health manage PubMed.gov which comprises of more than 29 million records, papers, reports for biomedical literature, including MEDLINE, life science and medical journals, articles, reviews, reports and  books.

BioPortfolio aims to cross reference relevant information on published papers, clinical trials and news associated with selected topics - speciality.

For example view all recent relevant publications on Epigenetics and associated publications and clincial trials.

Showing PubMed Articles 1–25 of 5,000+ from Physical review letters

First Evidence for cos2β>0 and Resolution of the Cabibbo-Kobayashi-Maskawa Quark-Mixing Unitarity Triangle Ambiguity.

We present first evidence that the cosine of the CP-violating weak phase 2β is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of B^{0}→D^{(*)}h^{0} with D→K_{S}^{0}π^{+}π^{-} decays, where h^{0}∈{π^{0},η,ω} denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the ϒ(4S) resonance a...

Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos.

The most general and versatile defining feature of quantum chaotic systems is that they possess an energy spectrum with correlations universally described by random matrix theory (RMT). This feature can be exhibited by systems with a well-defined classical limit as well as by systems with no classical correspondence, such as locally interacting spins or fermions. Despite great phenomenological success, a general mechanism explaining the emergence of RMT without reference to semiclassical concepts is still m...

First Observation of ^{20}B and ^{21}B.

The most neutron-rich boron isotopes ^{20}B and ^{21}B have been observed for the first time following proton removal from ^{22}N and ^{22}C at energies around 230  MeV/nucleon. Both nuclei were found to exist as resonances which were detected through their decay into ^{19}B and one or two neutrons. Two-proton removal from ^{22}N populated a prominent resonancelike structure in ^{20}B at around 2.5 MeV above the one-neutron decay threshold, which is interpreted as arising from the closely spaced 1^{-},...

Resonant Second-Order Nonlinear Terahertz Response of Gallium Arsenide.

The second-order nonlinear response of bulk GaAs in the terahertz (THz) range is mapped via the THz field emitted after near-infrared interband excitation. Phase-resolved THz detection reveals three nonlinear processes occurring in parallel, the Raman excitation of transverse optical phonons, the creation of coherent polarizations on heavy-hole-light-hole transitions, and the generation of displacive shift currents with a THz spectrum controlled by the near-infrared optical phase. Theoretical calculations r...

Zero-Index Bound States in the Continuum.

Metamaterials with an effective zero refractive index associated with their electromagnetic response are sought for a number of applications in communications and nonlinear optics. A promising way that this can be achieved in all-dielectric photonic crystals is through the design of a Dirac cone at zero Bloch wave vector in the photonic band structure. In the optical frequency range, the natural way to implement this design is through the use of a photonic crystal slab. In the existing implementation, howev...

Hierarchical Optimization: Fast and Robust Multiscale Stochastic Reconstructions with Rescaled Correlation Functions.

Stochastic reconstructions based on universal correlation functions allow obtaining spatial structures based on limited input data or to fuse multiscale images from different sources. Current application of such techniques is severely hampered by the computational cost of the annealing optimization procedure. In this study we propose a novel hierarchical annealing method based on rescaled correlation functions, which improves both accuracy and computational efficiency of reconstructions while not suffering ...

Gañán-Calvo replies.

Band Signatures for Strong Nonlinear Hall Effect in Bilayer WTe_{2}.

Unconventional responses upon breaking discrete or crystal symmetries open avenues for exploring emergent physical systems and materials. By breaking inversion symmetry, a nonlinear Hall signal can be observed, even in the presence of time-reversal symmetry, quite different from the conventional Hall effects. Low-symmetry two-dimensional materials are promising candidates for the nonlinear Hall effect, but it is less known when a strong nonlinear Hall signal can be measured, in particular, its connections w...

Unconventional Flatband Line States in Photonic Lieb Lattices.

Flatband systems typically host "compact localized states" (CLS) due to destructive interference and macroscopic degeneracy of Bloch wave functions associated with a dispersionless energy band. Using a photonic Lieb lattice (LL), such conventional localized flatband states are found to be inherently incomplete, with the missing modes manifested as extended line states that form noncontractible loops winding around the entire lattice. Experimentally, we develop a continuous-wave laser writing technique to es...

Comment on "Revision of Bubble Bursting: Universal Scaling Laws of Top Jet Drop Size and Speed".

Silicon Liquid Structure and Crystal Nucleation from Ab Initio Deep Metadynamics.

Studying the crystallization process of silicon is a challenging task since empirical potentials are not able to reproduce well the properties of both a semiconducting solid and metallic liquid. On the other hand, nucleation is a rare event that occurs in much longer timescales than those achievable by ab initio molecular dynamics. To address this problem, we train a deep neural network potential based on a set of data generated by metadynamics simulations using a classical potential. We show how this is a...

Observation of a Dynamical Sliding Phase Superfluid with P-Band Bosons.

Sliding phases have been long sought after in the context of coupled XY models, as they are of relevance to various many-body systems such as layered superconductors, freestanding liquid-crystal films, and cationic lipid-DNA complexes. Here we report an observation of a dynamical sliding phase superfluid that emerges in a nonequilibrium setting from the quantum dynamics of a three-dimensional ultracold atomic gas loaded into the P band of a one-dimensional optical lattice. A shortcut loading method is used ...

Logarithmic Upturn in Low-Temperature Electronic Transport as a Signature of d-Wave Order in Cuprate Superconductors.

In cuprate superconductors, high magnetic fields have been used extensively to suppress superconductivity and expose the underlying normal state. Early measurements revealed insulatinglike behavior in underdoped material versus temperature T, in which resistivity increases on cooling with a puzzling log(1/T) form. We instead use microwave measurements of flux-flow resistivity in YBa_{2}Cu_{3}O_{6+y} and Tl_{2}Ba_{2}CuO_{6+δ} to study charge transport deep inside the superconducting phase, in the low-temper...

Strong Spin Dependence of Correlation Effects in Ni Due to Stoner Excitations.

Using high-resolution angle-resolved photoemission, we observe a strong spin-dependent renormalization and lifetime broadening of the quasiparticle excitations in the electronic band structure of Ni(111) in an energy window of ∼0.3  eV below the Fermi level. We derive a quantitative result for the spin-dependent lifetime broadening by comparing the scattering rates of majority and minority d states, and further show that spin-dependent electron correlations are instead negligible for sp states. From o...

Steep Cliffs and Saturated Exponents in Three-Dimensional Scalar Turbulence.

The intermittency of a passive scalar advected by three-dimensional Navier-Stokes turbulence at a Taylor-scale Reynolds number of 650 is studied using direct numerical simulations on a 4096^{3} grid; the Schmidt number is unity. By measuring scalar increment moments of high orders, while ensuring statistical convergence, we provide unambiguous evidence that the scaling exponents saturate to 1.2 for moment orders beyond about 12, indicating that scalar intermittency is dominated by the most singular shocklik...

Measuring the Single-Particle Density Matrix for Fermions and Hard-Core Bosons in an Optical Lattice.

Ultracold atoms in optical lattices provide clean, tunable, and well-isolated realizations of paradigmatic quantum lattice models. With the recent advent of quantum-gas microscopes, they now also offer the possibility to measure the occupations of individual lattice sites. What, however, has not yet been achieved is to measure those elements of the single-particle density matrix, which are off- diagonal in the occupation basis. Here, we propose a scheme to access these basic quantities both for fermions as ...

Interface-Governed Deformation of Nanobubbles and Nanotents Formed by Two-Dimensional Materials.

Nanoblisters such as nanobubbles and nanotents formed by two-dimensional (2D) materials have been extensively exploited for strain engineering purposes as they can produce self-sustained, nonuniform in-plane strains through out-of-plane deformation. However, deterministic measure and control of strain fields in these systems are challenging because of the atomic thinness and unconventional interface behaviors of 2D materials. Here, we experimentally characterize a simple and unified power law for the profil...

Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence.

We experimentally demonstrate two-photon interference of a time-energy entangled photon pair generated via collective two-photon coherence in Doppler-broadened cascade-type ^{87}Rb atoms. The two photons originally proposed by J. D. Franson are realized as a photon pair due to collective effects, which are generated from the cascade atomic system with a relatively long lifetime of the initial state and a considerably shorter lifetime of the intermediate state. The achievement of two-photon interference wi...

Nonequilibrium Pair Breaking in Ba(Fe_{1-x}Co_{x})_{2}As_{2} Superconductors: Evidence for Formation of a Photoinduced Excitonic State.

Ultrafast terahertz (THz) pump-probe spectroscopy reveals an unusual out-of-equilibrium Cooper pair nonlinear dynamics and a nonequilibrium state driven by femtosecond (fs) photoexcitation of superconductivity (SC) in iron pnictides. Following fast SC quench via hot-phonon scattering, a second, abnormally slow (many hundreds of picoseconds), SC quench regime is observed prior to any recovery. Importantly, a nonlinear pump fluence dependence is identified for this remarkably long prebottleneck dynamics that ...

Kinetic Range Spectral Features of Cross Helicity Using the Magnetospheric Multiscale Spacecraft.

We study spectral features of ion velocity and magnetic field correlations in the magnetosheath and in the solar wind using data from the Magnetospheric Multiscale (MMS) spacecraft. High-resolution MMS observations enable the study of the transition of these correlations between their magnetofluid character at larger scales into the subproton kinetic range, previously unstudied in spacecraft data. Cross-helicity, angular alignment, and energy partitioning is examined over a suitable range of scales, employi...

Measuring Dirac Cones in a Subwavelength Metamaterial.

The exciting discovery of bidimensional systems in condensed matter physics has triggered the search of their photonic analogues. In this Letter, we describe a general scheme to reproduce some of the systems ruled by a tight-binding Hamiltonian in a locally resonant metamaterial; by specifically controlling the structure and the composition it is possible to engineer the band structure at will. We numerically and experimentally demonstrate this assertion in the microwave domain by reproducing the band struc...

Steady-State Generation of Wigner-Negative States in One-Dimensional Resonance Fluorescence.

In this work we demonstrate numerically that the nonlinearity provided by a continuously driven two-level system allows for the generation of Wigner-negative states of the electromagnetic field confined in one spatial dimension. Wigner-negative states, also known as Wigner nonclassical states, are desirable for quantum information protocols beyond the scope of classical computers. Focusing on the steady-state emission from the two-level system, we find the largest negativity at the drive strength where the ...

Possible Pairing Symmetry in the FeSe-Based Superconductors Determined by Quasiparticle Interference.

We study the momentum-integrated quasiparticle interference (QPI) in the FeSe-based superconductors. This method was recently proposed theoretically and has been applied to determine the pairing symmetry in these materials experimentally. Our findings suggest that, if the incipient bands and the superconducting (SC) pairing on them are taken into consideration, then the experimentally measured bound states and momentum-integrated QPI can be well fitted, even if the SC order parameter does not change sign on...

Stable p-Wave Resonant Two-Dimensional Fermi-Bose Dimers.

We consider two-dimensional weakly bound heterospecies molecules formed in a Fermi-Bose mixture with attractive Fermi-Bose and repulsive Bose-Bose interactions. Bosonic exchanges lead to an intermolecular attraction, which can be controlled and tuned to a p-wave resonance. Such attractive fermionic molecules can be realized in quasi-two-dimensional ultracold isotopic mixtures. We show that they are stable with respect to the recombination to deeply bound molecular states and with respect to the formation of...

Pressure-Induced Electronic and Structural Phase Evolution in the van der Waals Compound FePS_{3}.

Two-dimensional materials have proven to be a prolific breeding ground of new and unstudied forms of magnetism and unusual metallic states, particularly when tuned between their insulating and metallic phases. Here we present work on a new metal-to-insulator transition system FePS_{3}. This compound is a two-dimensional van der Waals antiferromagnetic Mott insulator. We report the discovery of an insulator-metal transition in FePS_{3}, as evidenced by x-ray diffraction and electrical transport measureme...


Advertisement
Quick Search
Advertisement
Advertisement