Advertisement

Topics

PubMed Journals Articles About "Gene Editing Revolutionizing Medicine Causing Government Ethics Nightmare" RSS

00:49 EST 22nd November 2017 | BioPortfolio

Gene Editing Revolutionizing Medicine Causing Government Ethics Nightmare PubMed articles on BioPortfolio. Our PubMed references draw on over 21 million records from the medical literature. Here you can see the latest Gene Editing Revolutionizing Medicine Causing Government Ethics Nightmare articles that have been published worldwide.

More Information about "Gene Editing Revolutionizing Medicine Causing Government Ethics Nightmare" on BioPortfolio

We have published hundreds of Gene Editing Revolutionizing Medicine Causing Government Ethics Nightmare news stories on BioPortfolio along with dozens of Gene Editing Revolutionizing Medicine Causing Government Ethics Nightmare Clinical Trials and PubMed Articles about Gene Editing Revolutionizing Medicine Causing Government Ethics Nightmare for you to read. In addition to the medical data, news and clinical trials, BioPortfolio also has a large collection of Gene Editing Revolutionizing Medicine Causing Government Ethics Nightmare Companies in our database. You can also find out about relevant Gene Editing Revolutionizing Medicine Causing Government Ethics Nightmare Drugs and Medications on this site too.

Showing "Gene Editing Revolutionizing Medicine Causing Government Ethics Nightmare" PubMed Articles 1–25 of 29,000+

Progress and prospects in plant genome editing.

The emergence of sequence-specific nucleases that enable genome editing is revolutionizing basic and applied biology. Since the introduction of CRISPR-Cas9, genome editing has become widely used in transformable plants for characterizing gene function and improving traits, mainly by inducing mutations through non-homologous end joining of double-stranded breaks generated by CRISPR-Cas9. However, it would be highly desirable to perform precision gene editing in plants, especially in transformation-recalcitra...


"My Whole Life is Ethics!" Ordinary Ethics and Gene Therapy Clinical Trials.

What and where is ethics in gene therapy? Historical debates have identified a set of ethical issues with the field, and current regulatory systems presume a discrete ethics that can be achieved or protected. Resisting attempts at demarcation or resolution, we use the notions of "ordinary" or "everyday" ethics to develop a better understanding of the complexities of experimental gene therapy for patients, families and practitioners, and create richer imaginings of ethics in the gene therapy sphere. Drawing ...

Refining strategies to translate genome editing to the clinic.

Recent progress in developing programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas nucleases, have paved the way for gene editing to enter clinical practice. This translation is a result of combining high nuclease activity with high specificity and successfully applying this technology in various preclinical disease models, including infectious disease, primary immunodeficienc...


Why gene editing isn't the answer.

Gene therapy and editing: Novel potential treatments for neuronal channelopathies.

Pharmaceutical treatment can be inadequate, non-effective, or intolerable for many people suffering from a neuronal channelopathy. Development of novel treatment options, particularly those with the potential to be curative is warranted. Gene therapy approaches can permit cell-specific modification of neuronal and circuit excitability and have been investigated experimentally as a therapy for numerous neurological disorders, with clinical trials for several neurodegenerative diseases ongoing. Channelopathie...

Disease context and gene editing.

Designing Ethical Trials of Germline Gene Editing.

Gene editing and the health of future generations.

Human Germline Genome Editing.

With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors...

A-to-I RNA editing of BLCAP lost the inhibition to STAT3 activation in cervical cancer.

Bladder cancer-associated protein (BLCAP) gene is a highly conserved gene with tumor-suppressor function in different carcinomas. It is also a novel ADAR-mediated editing substrate undergoes multiple A-to-I RNA editing events. Although the anti-tumorigenic role of BLCAP has been examined in preliminarily studies, the relationship between BLCAP function and A-to-I RNA editing in cervical carcinogenesis still require further exploration. Herein, we analyzed the coding sequence of BLCAP transcripts in 35 paire...

Efficient gene editing via non-viral delivery of CRISPR-Cas9 system using polymeric and hybrid microcarriers.

CRISPR-Cas9 is a revolutionary genome-editing technology that has enormous potential for the treatment of genetic diseases. However, the lack of efficient and safe, non-viral delivery systems has hindered its clinical application. Here, we report on the application of polymeric and hybrid microcarriers, made of degradable polymers such as polypeptides and polysaccharides and modified by silica shell, for delivery of all CRISPR-Cas9 components. We found that these microcarriers mediate more efficient transfe...

Generation of novel resistance genes using mutation and targeted gene editing.

Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a 'dream technology' to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by disrupting host susceptibility genes, or by increasing the expression of viral resistance genes. However, precise targets must be identified and their roles understood to minimize potential negative effects on th...

Same Principles, Different Worlds: A Critical Discourse Analysis of Medical Ethics and Nursing Ethics in Finnish Professional Texts.

This qualitative social scientific study explores professional texts of healthcare ethics to understand the ways in which ethical professionalism in medicine and nursing are culturally constructed in Finland. Two books in ethics, published by Finnish national professional organizations-one for nurses and one for physicians-were analyzed with the method of critical discourse analysis. Codes of ethics for each profession were also scrutinized. Analysis of the texts sought to reveal what is taken for granted i...

Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp. formosana.

RNA editing is a process of post-transcriptional level of gene regulation by nucleotide modification. Previously, the chloroplast DNA of Taiwan endemic moth orchid, P. aphrodite subsp. formosana was determined, and 44 RNA editing sites were identified from 24 plastid protein-coding transcripts of leaf tissue via RT-PCR and then conventional Sanger sequencing. However, the RNA editing status of whole-plastid transcripts in leaf and other distinct tissue types in moth orchids has not been addressed. To sensit...

The Dynamics of Technology in Revolutionizing Education and Research.

Molecular tools for gene manipulation in filamentous fungi.

Functional genomics of filamentous fungi has gradually uncovered gene information for constructing 'cell factories' and controlling pathogens. Available gene manipulation methods of filamentous fungi include random integration methods, gene targeting technology, gene editing with artificial nucleases and RNA technology. This review describes random gene integration constructed by restriction enzyme-mediated integration (REMI); Agrobacterium-mediated transformation (AMT); transposon-arrayed gene knockout (TA...

Beyond demarcation: Care ethics as an interdisciplinary field of inquiry.

For many years the body of literature known as 'care ethics' or 'ethics of care' has been discussed as regards its status and nature. There is much confusion and little structured discussion. The paper of Klaver et al. (2014) was written as a discussion article to which we respond.

Educational technology: revolutionizing surgical education.

Glitch in the Switch.

Migrating patient records from one electronic health record system to another can be a nightmare. A La Porte pediatrician's experience provides a cautionary tale for all physicians.

A-to-I RNA editing - thinking beyond the single nucleotide.

Adenosine-to-inosine RNA editing is a conserved process, which is performed by ADAR enzymes. By changing nucleotides in coding regions of genes and altering codons, ADARs expand the cell's protein repertoire. This function of the ADAR enzymes is essential for human brain development. However, most of the known editing sites are in non-coding repetitive regions in the transcriptome and the purpose of editing in these regions is unclear. Recent studies, which have shown that editing levels of transcripts vary...

A novel tetratricopeptide repeat protein, WHITE TO GREEN1, is required for early chloroplast development and affects RNA editing in chloroplasts.

The chloroplast is essential for plant photosynthesis and production, but the regulatory mechanism of chloroplast development is still elusive. Here, a novel gene, WHITE TO GREEN1 (WTG1), was identified to have a function in chloroplast development and plastid gene expression by screening Arabidopsis leaf coloration mutants. WTG1 encodes a chloroplast-localized tetratricopeptide repeat protein that is expressed widely in Arabidopsis cells. Disruption of WTG1 suppresses plant growth, retards leaf greening an...

New variants of CRISPR RNA guided genome editing enzymes.

CRISPR-mediated genome editing using the Streptococcus pyogenes Cas9 enzyme is revolutionizing life science by providing new, precise, facile and high throughput tools for genetic modification by the specific targeting of double-strand breaks in the genome of hosts. Plant biotechnologists have extensively used the S. pyogenes Cas9-based system since its inception in 2013. However, there are still some limitations to its even broader usage in plants. Major restrictions, especially in agricultural biotechnolo...

Production of Purified CasRNPs for Efficacious Genome Editing.

CRISPR-Cas systems have been harnessed as modular genome editing reagents for functional genomics and show promise to cure genetic diseases. Directed by a guide RNA, a Cas effector introduces a double stranded break in DNA and host cell DNA repair leads to the introduction of errors (e.g., to knockout a gene) or a programmed change. Introduction of a Cas effector and guide RNA as a purified Cas ribonucleoprotein complex (CasRNP) has recently emerged as a powerful approach to alter cell types and organisms. ...

Editing the Genome Without Double-Stranded DNA Breaks.

Genome editing methods have commonly relied on the initial introduction of double-stranded DNA breaks (DSBs), resulting in stochastic insertions, deletions, and translocations at the target genomic locus. To achieve gene correction, these methods typically require the introduction of exogenous DNA repair templates and low-efficiency homologous recombination processes. In this perspective we describe alternative, mechanistically motivated strategies to perform chemistry on the genome of unmodified cells with...

Therapeutic editing of hepatocyte genome in vivo.

The recent development of gene editing platforms enables making precise changes in the genome of eukaryotic cells. Programmable nucleases, such as meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)-associated nucleases, have revolutionized the way research is conducted as they facilitate the rapid production of mutant or knock-out cellular and animal models. These same genetic tools can ...


Quick Search
Advertisement