Advertisement

Topics

PubMed Journals Articles About "Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined" RSS

09:21 EST 11th December 2018 | BioPortfolio

Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined PubMed articles on BioPortfolio. Our PubMed references draw on over 21 million records from the medical literature. Here you can see the latest Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined articles that have been published worldwide.

More Information about "Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined" on BioPortfolio

We have published hundreds of Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined news stories on BioPortfolio along with dozens of Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined Clinical Trials and PubMed Articles about Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined for you to read. In addition to the medical data, news and clinical trials, BioPortfolio also has a large collection of Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined Companies in our database. You can also find out about relevant Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined Drugs and Medications on this site too.

Showing "Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined" PubMed Articles 1–25 of 11,000+

Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains.

d-Glucose, d-xylose and l-arabinose are major sugars in lignocellulosic hydrolysates. This study explores fermentation of glucose-xylose-arabinose mixtures by a consortium of three 'specialist' Saccharomyces cerevisiae strains. A d-glucose- and l-arabinose-tolerant xylose specialist was constructed by eliminating hexose phosphorylation in an engineered xylose-fermenting strain and subsequent laboratory evolution. A resulting strain anaerobically grew and fermented d-xylose in the presence of 20 g L-1 of d-g...


Sustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae.

Glutathione has diverse physiological functions, and therefore, the demand for it has increased recently. Currently, industrial mass production of glutathione is performed from D-glucose via fermentation by the budding yeast Saccharomyces cerevisiae. However, use of D-glucose often competes with demands for various other industries, leading to high production costs. To affordably produce glutathione, we aimed to produce high amounts of glutathione from D-glucose and D-xylose, which are the main constituents...

Quantitative assessment of DNA damage in the industrial ethanol production strain Saccharomyces cerevisiae PE-2.

Lignocellulosic hydrolysates remain one of the most abundantly used substrates for the sustainable production of second generation fuels and chemicals with Saccharomyces cerevisiae. Nevertheless, fermentation inhibitors such as acetic acid, furfural and hydroxymethylfurfural are formed during the process and can lead to slow or stuck fermentations and/or act as genotoxic agents leading to production strain genetic instability. We have developed a novel dominant deletion (DEL) cassette assay for quantificati...


Unraveling the genetic basis of fast L-arabinose consumption on top of recombinant xylose-fermenting Saccharomyces cerevisiae.

One major challenge in the bioconversion of lignocelluloses into ethanol is to develop Saccharomyces cerevisiae strains that can utilize all available sugars in biomass hydrolysates, especially the D-xylose and L-arabinose that cannot be fermented by the S. cerevisiae strain naturally. Here, we integrated an L-Arabinose Utilization Cassette (AUC) into the genome of an efficient D-xylose fermenting industrial diploid S. cerevisiae strain CIBTS0735 to make strain CIBTS1972. After evolving on arabinose, CIBTS1...

Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions.

During wine fermentation, yeasts produce metabolites that are known growth regulators. The relationship between certain higher alcohols derived from aromatic amino acid metabolism and yeast signalling has previously been reported. In the present work, tryptophol (TrpOH) or melatonin (MEL), which are putative growth regulators, were added to alcoholic fermentations. Fermentations were performed with three different inocula, combining Saccharomyces cerevisiae and four non-Saccharomyces yeast species, under tw...

Construction and characterization of a Saccharomyces cerevisiae strain able to grow on glucosamine as sole carbon and nitrogen source.

Saccharomyces cerevisiae can transport and phosphorylate glucosamine, but cannot grow on this amino sugar. While an enzyme catalyzing the reaction from glucosamine-6-phosphate to fructose-6-phosphate, necessary for glucosamine catabolism, is present in yeasts using N-acetylglucosamine as carbon source, a sequence homology search suggested that such an enzyme is absent from Saccharomyces cerevisiae. The gene YlNAG1 encoding glucosamine-6-phosphate deaminase from Yarrowia lipolytica was introduced into S. cer...

Fermentation of Saccharomyces cerevisiae - combining kinetic modeling and optimization techniques points out avenues to effective process design.

A combined experimental/theoretical approach is presented, for improving the predictability of Saccharomyces cerevisiae fermentations. In particular, a mathematical model was developed explicitly taking into account the main mechanisms of the fermentation process, allowing for continuous computation of key process variables, including the biomass concentration and the respiratory quotient (RQ). For model calibration and experimental validation, batch and fed-batch fermentations were carried out. Comparison ...

Simultaneous fermentation of biomass-derived sugars to ethanol by a co-culture of an engineered Escherichia coli and Saccharomyces cerevisiae.

Microorganisms ferment xylose at high rate only when glucose concentration in the medium falls below a critical level. Since the specific productivity of product is highest during exponential to early stationary phase of growth, a glucose utilization negative ethanologenic E. coli (strain LW419a) was constructed for high rate of xylose fermentation in combination with Turbo yeast. This co-culture fermented all the released sugars in an acid/enzyme-treated sugar cane bagasse slurry (10% solids) to an ethanol...

Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2.

In this work, the industrial Saccharomyces cerevisiae PE-2 strain, presenting innate capacity for xylitol accumulation, was engineered for xylitol production by overexpression of the endogenous GRE3 gene and expression of different xylose reductases from Pichia stipitis. The best-performing GRE3-overexpressing strain was capable to produce 148.5 g/L of xylitol from high xylose-containing media, with a 0.95 g/g yield, and maintained close to maximum theoretical yields (0.89 g/g) when tested in non-deto...

Enhancing Yeast Alcoholic Fermentations.

The production of ethanol by yeast fermentation represents the largest of all global biotechnologies. Consequently, the yeast Saccharomyces cerevisiae is the world's premier industrial microorganism, which is responsible not only for the production of alcoholic beverages, including beer, wine, and distilled spirits, but also for the billions of liters of bioethanol produced annually for use as a renewable transportation fuel. Although humankind has exploited the fermentative activities of yeasts for millenn...

Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae.

Saccharomyces cerevisiae has a natural ability to produce higher alcohols, making it a promising candidate for production of isobutanol. However, the several pathways competing with isobutanol biosynthesis lead to production of substantial amounts of l-valine and l-isoleucine in mitochondria and isobutyrate, l-leucine, and ethanol in cytosol. To increase flux to isobutanol by removing by-product formation, the genes associated with formation of l-valine (BAT1), l-isoleucine (ILV1), isobutyrate (ALD6), l-leu...

Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling.

Efficient conversion of cellulosic sugars in cellulosic hydrolysates is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge. The present study reports a new approach for simultaneous fermentation of cellobiose and xylose by using the co-culture consisting of recombinant Saccharomyces cerevisiae specialist strains. The co-culture system can provide competitive advantage of modularity compared to the single culture system and can be ...

Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added.

In recent years, the awareness of consumers about the impact of food on health is constantly increasing. A high amount of dietary antioxidant intake can be supplied by beverages widely consumed, such as wine, coffee, beer. Recently, an increase in the consumer interest was observed for beer, in consequence of the high phenolic antioxidants and low ethanol content present in this beverage. Among all beer types, in recent years, consumption of craft beers has gained popularity. Being an unpasteurized and unfi...

Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes.

Monoethylene glycol (MEG) is an important commodity chemical with applications in numerous industrial processes, primarily in the manufacture of polyethylene terephthalate (PET) polyester used in packaging applications. In the drive towards a sustainable chemical industry, bio-based production of MEG from renewable biomass has attracted growing interest. Recent attempts for bio-based MEG production have investigated metabolic network modifications in Escherichia coli, specifically rewiring the xylose assimi...

Cell-to-cell contact mechanism modulates Starmerella bacillaris death in mixed culture fermentations with Saccharomyces cerevisiae.

The use of mixed culture fermentations with selected Starmerella bacillaris and Saccharomyces cerevisiae strains is gaining winemaking attention, mainly due to their ability to enhance particular characteristics in the resulting wines. In this context, yeast interspecies interactions during fermentation have a fundamental role to determine the desired product characteristics, since they may modulate yeast growth and as a consequence metabolite production. In order to get an insight into these interactions, ...

Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake.

Cas9-assisted genome editing was used to construct an engineered glucose-phosphorylation-negative S. cerevisiae strain, expressing the Lactobacillus plantaruml-arabinose pathway and the Penicillium chrysogenum transporter PcAraT. This strain, which showed a growth rate of 0.26 h-1 on l-arabinose in aerobic batch cultures, was subsequently evolved for anaerobic growth on l-arabinose in the presence of d-glucose and d-xylose. In four strains isolated from two independent evolution experiments the galactose-tr...

Direct conversion of cellulose into ethanol and ethyl-β-d-glucoside via engineered Saccharomyces cerevisiae.

Simultaneous saccharification and fermentation (SSF) of cellulose via engineered Saccharomyces cerevisiae is a sustainable solution to valorize cellulose into fuels and chemicals. In this study, we demonstrate the feasibility of direct conversion of cellulose into ethanol and a bio-degradable surfactant, ethyl-β-d-glucoside, via an engineered yeast strain (i.e., strain EJ2) expressing heterologous cellodextrin transporter (CDT-1) and intracellular β-glucosidase (GH1-1) originating from Neurospora crassa. ...

Enhanced production of d-lactate from mixed sugars in Corynebacterium glutamicum by overexpression of glycolytic genes encoding phosphofructokinase and triosephosphate isomerase.

The use of mixed sugars containing glucose and xylose in lignocellulosic biomass is desirable for the microbial production of chemicals and fuels. We investigated the effect of individual or simultaneous overexpression of glycolytic genes on d-lactate production from a mixture of glucose and xylose by a recombinant xylose-assimilating Corynebacterium glutamicum strain. The individual overexpression of genes encoding phosphofructokinase (PFK) and triosephosphate isomerase (TPI) increased d-lactate production...

Modulation of gene expression by cocktail δ-integration to improve carotenoid production in Saccharomyces cerevisiae.

Carotenoids, including β-carotene, are commercially valuable compounds, and their production by engineered Saccharomyces cerevisiae is a promising strategy for their industrial production. Here, to improve β-carotene productivity in engineered S. cerevisiae, a cocktail δ-integration strategy, which involves simultaneous integration of various multi-copy genes, followed by selection of desirable transformants, was applied for modulation of β-carotene production-related genes expression. The engineered st...

Torulaspora delbrueckii produces high levels of C5 and C6 polyols during wine fermentations.

Non-Saccharomyces yeasts impact wine fermentations and can diversify the flavour profiles of wines. However, little information is available on the metabolic networks of most of these species. Here we show that unlike the main wine yeast Saccharomyces cerevisiae, Torulaspora delbrueckii and to a lesser extent Lachancea thermotolerans produce significant concentrations of C5 and C6 polyols under wine fermentation conditions. In particular, D-arabitol, D-sorbitol and D-mannitol were produced at significant le...

Fermentative behaviour and competition capacity of cryotolerant Saccharomyces species in different nitrogen conditions.

The selection of yeasts with low nitrogen requirement is a current need in winemaking. In this work, we analysed nitrogen requirements of strains belonging to the cryotolerant species S. uvarum, S. eubayanus and S. kudriavzevii, in order to evaluate their potential for conducting the fermentation of low nitrogen content grape musts. Our result demonstrated that S. eubayanus is the species less influenced by the increasing nitrogen concentrations in both growth and fermentation conditions. Strains showing th...

Ethanol production from xylose is highly increased by the Kluyveromyces marxianus mutant 17694-DH1.

Directed evolutionary approach and random mutagenesis were performed on thermotolerant yeast Kluyveromyces marxianus KCTC17694 for isolating a yeast strain producing ethanol from xylose efficiently. The isolated mutant strain, K. marxianus 17694-DH1, showed 290% and 131% improvement in ethanol concentration and ethanol production yield from xylose, respectively, as compared with the parental strain. Sequencing of the KmXYL1 gene of K. marxianus 17694-DH1 revealed substitutions of arginine and tryptophan wit...

Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene.

Heterologous synthesis of triterpenoids in Saccharomyces cerevisiae from its native metabolite squalene has been reported to offer an alternative to chemical synthesis and extraction from plant material if productivities can be increased.Here, we physiologically characterized a squalene overproducing S. cerevisiae CEN.PK strain to elucidate the effect of cultivation conditions on the production of this central triterpenoid precursor. The maximum achievable squalene concentration was substantially influenced...

CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis.

Glucose and xylose are the two most abundant sugars in renewable lignocellulose sources; however, typically they cannot be simultaneously utilized due to carbon catabolite repression. N-acetylglucosamine (GlcNAc) is a typical nutraceutical and has many applications in the field of healthcare. Here, we have developed a gene repressor system based on xylose-induced CRISPR interference (CRISPRi) in Bacillus subtilis, aimed at downregulating the expression of three genes (zwf, pfkA, glmM) that control the major...

Production of d-xylonic acid using a non-recombinant Corynebacterium glutamicum strain.

It was found that Corynebacterium glutamicum ΔiolR devoid of the transcriptional regulator IolR accumulates high amounts of d-xylonate when cultivated in the presence of d-xylose. Detailed analyses of constructed deletion mutants revealed that the putative myo-inositol 2-dehydrogenase IolG also acts as d-xylose dehydrogenase and is mainly responsible for d-xylonate oxidation in this organism. Process development for d-xylonate production was initiated by cultivating C. glutamicum ΔiolR on defined d-xylose...


Advertisement
Quick Search
Advertisement
Advertisement