Advertisement

Topics

PubMed Journals Articles About "Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined" RSS

20:17 EDT 20th August 2018 | BioPortfolio

Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined PubMed articles on BioPortfolio. Our PubMed references draw on over 21 million records from the medical literature. Here you can see the latest Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined articles that have been published worldwide.

More Information about "Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined" on BioPortfolio

We have published hundreds of Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined news stories on BioPortfolio along with dozens of Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined Clinical Trials and PubMed Articles about Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined for you to read. In addition to the medical data, news and clinical trials, BioPortfolio also has a large collection of Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined Companies in our database. You can also find out about relevant Saccharomyces Cerevisiae Strain Comparison Glucose Xylose Fermentations Defined Drugs and Medications on this site too.

Showing "Saccharomyces cerevisiae strain comparison glucose xylose fermentations defined" PubMed Articles 1–25 of 11,000+

Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains.

d-Glucose, d-xylose and l-arabinose are major sugars in lignocellulosic hydrolysates. This study explores fermentation of glucose-xylose-arabinose mixtures by a consortium of three 'specialist' Saccharomyces cerevisiae strains. A d-glucose- and l-arabinose-tolerant xylose specialist was constructed by eliminating hexose phosphorylation in an engineered xylose-fermenting strain and subsequent laboratory evolution. A resulting strain anaerobically grew and fermented d-xylose in the presence of 20 g L-1 of d-g...


Fermentation of Saccharomyces cerevisiae - combining kinetic modeling and optimization techniques points out avenues to effective process design.

A combined experimental/theoretical approach is presented, for improving the predictability of Saccharomyces cerevisiae fermentations. In particular, a mathematical model was developed explicitly taking into account the main mechanisms of the fermentation process, allowing for continuous computation of key process variables, including the biomass concentration and the respiratory quotient (RQ). For model calibration and experimental validation, batch and fed-batch fermentations were carried out. Comparison ...

Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.

Utilization of renewable feedstocks for the production of bio-based bulk chemicals, such as 2,3-butanediol (2,3-BDO), by engineered strains of the non-pathogenic yeast, Saccharomyces cerevisiae, has recently become an attractive option. In this study, to realize rapid production of 2,3-BDO, a flocculent, 2,3-BDO-producing S. cerevisiae strain YPH499/dPdAdG/BDN6-10/FLO1 was constructed from a previously developed 2,3-BDO-producing strain. Continuous 2,3-BDO fermentation was carried out by the flocculent stra...


Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2.

In this work, the industrial Saccharomyces cerevisiae PE-2 strain, presenting innate capacity for xylitol accumulation, was engineered for xylitol production by overexpression of the endogenous GRE3 gene and expression of different xylose reductases from Pichia stipitis. The best-performing GRE3-overexpressing strain was capable to produce 148.5 g/L of xylitol from high xylose-containing media, with a 0.95 g/g yield, and maintained close to maximum theoretical yields (0.89 g/g) when tested in non-deto...

Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2.

Even though contamination by bacteria and wild yeasts are frequently observed during fuel ethanol fermentation, our knowledge regarding the effects of both contaminants together is very limited, especially considering that the must composition can vary from exclusively sugarcane juice to a mixture of molasses and juice, affecting the microbial development. Here we studied the effects of the feedstock (sugarcane juice and molasses) and the co-culture of Lactobacillus fermentum and a wild Saccharomyces cerevi...

Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production.

We previously developed an E. coli strain that overproduces medium-chain methyl ketones for potential use as diesel fuel blending agents or as flavors and fragrances. To date, the strain's performance has been optimized during growth with glucose. However, lignocellulosic biomass hydrolysates also contain a substantial portion of hemicellulose-derived xylose, which is typically the second most abundant sugar after glucose. Commercialization of the methyl ketone-producing technology would benefit from the in...

Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae.

Saccharomyces cerevisiae has a natural ability to produce higher alcohols, making it a promising candidate for production of isobutanol. However, the several pathways competing with isobutanol biosynthesis lead to production of substantial amounts of l-valine and l-isoleucine in mitochondria and isobutyrate, l-leucine, and ethanol in cytosol. To increase flux to isobutanol by removing by-product formation, the genes associated with formation of l-valine (BAT1), l-isoleucine (ILV1), isobutyrate (ALD6), l-leu...

Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling.

Efficient conversion of cellulosic sugars in cellulosic hydrolysates is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge. The present study reports a new approach for simultaneous fermentation of cellobiose and xylose by using the co-culture consisting of recombinant Saccharomyces cerevisiae specialist strains. The co-culture system can provide competitive advantage of modularity compared to the single culture system and can be ...

Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added.

In recent years, the awareness of consumers about the impact of food on health is constantly increasing. A high amount of dietary antioxidant intake can be supplied by beverages widely consumed, such as wine, coffee, beer. Recently, an increase in the consumer interest was observed for beer, in consequence of the high phenolic antioxidants and low ethanol content present in this beverage. Among all beer types, in recent years, consumption of craft beers has gained popularity. Being an unpasteurized and unfi...

Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.

Haploid laboratory strains of Saccharomyces cerevisiae are commonly used for genetic engineering to enable their xylose utilization but little is known about the industrial yeast which is often recognized as diploid and as well as haploid and tetraploid. Here we report three unique signature pathway expression patterns and gene interactions in the centre metabolic pathways that signify xylose utilization of genetically engineered industrial yeast S. cerevisiae NRRL Y-50463, a diploid yeast. Quantitative exp...

Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake.

Cas9-assisted genome editing was used to construct an engineered glucose-phosphorylation-negative S. cerevisiae strain, expressing the Lactobacillus plantaruml-arabinose pathway and the Penicillium chrysogenum transporter PcAraT. This strain, which showed a growth rate of 0.26 h-1 on l-arabinose in aerobic batch cultures, was subsequently evolved for anaerobic growth on l-arabinose in the presence of d-glucose and d-xylose. In four strains isolated from two independent evolution experiments the galactose-tr...

Direct conversion of cellulose into ethanol and ethyl-β-d-glucoside via engineered Saccharomyces cerevisiae.

Simultaneous saccharification and fermentation (SSF) of cellulose via engineered Saccharomyces cerevisiae is a sustainable solution to valorize cellulose into fuels and chemicals. In this study, we demonstrate the feasibility of direct conversion of cellulose into ethanol and a bio-degradable surfactant, ethyl-β-d-glucoside, via an engineered yeast strain (i.e., strain EJ2) expressing heterologous cellodextrin transporter (CDT-1) and intracellular β-glucosidase (GH1-1) originating from Neurospora crassa. ...

New rapid PCR protocol based on High-Resolution Melting analysis (HRMA) to identify Saccharomyces cerevisiae and other species within its genus.

Selection projects aiming at the identification of new Saccharomyces strains are always on going as the use of the suitable yeast can strongly improve fermented food production, particularly winemaking. They are mainly targeted on S. cerevisiae, but others species in the Saccharomyces genus are of interest. For this reason, more and more efficient molecular techniques for yeast identification able to accelerate yeast selection process are always needed. Among the Saccharomyces genus, four yeasts are widespr...

An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae.

A wide range of commercially relevant aromatic chemicals can be synthesized via the shikimic acid pathway. Thus, this pathway has been the target of diverse metabolic engineering strategies. In the present work, an optimized yeast strain for production of the shikimic acid pathway intermediate 3-dehydroshikimate (3-DHS) was generated, which is a precursor for the production of the valuable compounds cis, cis-muconic acid (CCM) and gallic acid (GA). Production of CCM requires the overexpression of the hetero...

Crystal structure and biochemical characterization of xylose isomerase from Piromyces sp. E2.

Biofuel production using lignocellulosic biomass is gaining attention because it can be substituted for fossil fuels without competing with edible resources. However, because Saccharomyces cerevisiae does not have a D-xylose metabolic pathway, oxidoreductase or isomerase pathways must be introduced to utilize D-xylose from lignocellulosic biomass in S. cerevisiae. To elucidate the biochemical properties of xylose isomerase from Piromyces sp. E2 (PsXI), we determine its crystal structure in complex with subs...

Torulaspora delbrueckii produces high levels of C5 and C6 polyols during wine fermentations.

Non-Saccharomyces yeasts impact wine fermentations and can diversify the flavour profiles of wines. However, little information is available on the metabolic networks of most of these species. Here we show that unlike the main wine yeast Saccharomyces cerevisiae, Torulaspora delbrueckii and to a lesser extent Lachancea thermotolerans produce significant concentrations of C5 and C6 polyols under wine fermentation conditions. In particular, D-arabitol, D-sorbitol and D-mannitol were produced at significant le...

Secretory overexpression of Bacillus thermocatenulatus lipase in Saccharomyces cerevisiae using combinatorial library strategy.

Simple and cost-effective lipase expression host microorganisms are highly desirable. A combinatorial library strategy was used to improve the secretory expression of lipase from Bacillus thermocatenulatus (BTL2) in the culture supernatant of Saccharomyces cerevisiae. A plasmid library including expression cassettes composed of sequences encoding one of each 15 promoters, 15 secretion signals, and 15 terminators derived from yeast species, S. cerevisiae, Pichia pastoris, and Hansenula polymorpha, was constr...

Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D.

Completion of eukaryal genomes can be difficult task with the highly repetitive sequences along the chromosomes and short read lengths of second-generation sequencing. Saccharomyces cerevisiae strain CEN.PK113-7D, widely used as a model organism and a cell factory, was selected for this study to demonstrate the superior capability of very long sequence reads for de novo genome assembly. We generated long reads using two common third-generation sequencing technologies (Oxford Nanopore Technology (ONT) and Pa...

Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene.

Heterologous synthesis of triterpenoids in Saccharomyces cerevisiae from its native metabolite squalene has been reported to offer an alternative to chemical synthesis and extraction from plant material if productivities can be increased.Here, we physiologically characterized a squalene overproducing S. cerevisiae CEN.PK strain to elucidate the effect of cultivation conditions on the production of this central triterpenoid precursor. The maximum achievable squalene concentration was substantially influenced...

Saccharomyces cerevisiae variety diastaticus friend or foe? Spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization.

Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages (Folz, Hofmann and Stahl 2011; Hutzler et al. 2012). Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diast...

Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase.

To efficiently ferment intermediate cellodextrins released during cellulose hydrolysis, Saccharomyces cerevisiae has been engineered by introduction of a heterologous cellodextrin utilizing pathway consisting of a cellodextrin transporter and either an intracellular β-glucosidase or a cellobiose phosphorylase. Among two types of cellodextrin transporters, the passive facilitator CDT-2 has not enabled better cellobiose fermentation than the active transporter CDT-1, which suggests that the CDT-2 might be en...

Production of d-xylonic acid using a non-recombinant Corynebacterium glutamicum strain.

It was found that Corynebacterium glutamicum ΔiolR devoid of the transcriptional regulator IolR accumulates high amounts of d-xylonate when cultivated in the presence of d-xylose. Detailed analyses of constructed deletion mutants revealed that the putative myo-inositol 2-dehydrogenase IolG also acts as d-xylose dehydrogenase and is mainly responsible for d-xylonate oxidation in this organism. Process development for d-xylonate production was initiated by cultivating C. glutamicum ΔiolR on defined d-xylose...

Exploring the potential of lactic acid production from lignocellulosic hydrolysates with various ratios of hexose versus pentose by Bacillus coagulans IPE22.

The aim of this study was to investigate the feasibility of utilizing different lignocellulosic hydrolysates with various hexose versus pentose (H:P) ratios to produce lactic acid (LA) from Bacillus coagulans IPE22 by fermentations with single and mixed sugar. In single sugar utilization, glucose tended to promote LA production, and xylose preferred to enhance cell growth. In mixed sugar utilization, glucose and pentose were consumed simultaneously when glucose concentration was lower than 20 g/L, and alm...

Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi.

Oleaginous microbes can convert substrates such as carbon dioxide, sugars, and organic acids to single-cell oils (SCOs). Among the oleaginous microorganisms, Lipomyces starkeyi is a particularly well-suited host given its impressive native abilities, including the capability to utilize a wide variety of carbon sources. In this work, the potential of L. starkeyi NBRC10381 to produce SCOs in a synthetically nitrogen-limited mineral medium (-NMM) was investigated by differing the inoculum size using glucose a...

Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose.

Given its capacity to tolerate stress, NAD(P)H/ NAD(P) balance, and increased ATP levels, the platform strain Pseudomonas putida EM42, a genome-edited derivative of the soil bacterium P. putida KT2440, can efficiently host a suite of harsh reactions of biotechnological interest. Because of the lifestyle of the original isolate, however, the nutritional repertoire of P. putida EM42 is centered largely on organic acids, aromatic compounds and some hexoses (glucose and fructose). To enlarge the biochemical net...


Advertisement
Quick Search
Advertisement
Advertisement