Topics

PubMed Journals Articles About "Energy Efficient Synaptic Plasticity" RSS

22:23 EDT 3rd April 2020 | BioPortfolio

Energy Efficient Synaptic Plasticity PubMed articles on BioPortfolio. Our PubMed references draw on over 21 million records from the medical literature. Here you can see the latest Energy Efficient Synaptic Plasticity articles that have been published worldwide.

More Information about "Energy Efficient Synaptic Plasticity" on BioPortfolio

We have published hundreds of Energy Efficient Synaptic Plasticity news stories on BioPortfolio along with dozens of Energy Efficient Synaptic Plasticity Clinical Trials and PubMed Articles about Energy Efficient Synaptic Plasticity for you to read. In addition to the medical data, news and clinical trials, BioPortfolio also has a large collection of Energy Efficient Synaptic Plasticity Companies in our database. You can also find out about relevant Energy Efficient Synaptic Plasticity Drugs and Medications on this site too.

Showing "Energy efficient synaptic plasticity" PubMed Articles 1–25 of 12,000+

Energy efficient synaptic plasticity.

Many aspects of the brain's design can be understood as the result of evolutionary drive towards metabolic efficiency. In addition to the energetic costs of neural computation and transmission, experimental evidence indicates that synaptic plasticity is metabolically demanding as well. As synaptic plasticity is crucial for learning, we examine how these metabolic costs enter in learning. We find that when synaptic plasticity rules are naively implemented, training neural networks requires extremely large am...


Multi-gate memristive synapses realized with the lateral heterostructure of 2D WSe and WO.

The development of novel synaptic device architectures with a high order of synaptic plasticity can provide a breakthrough toward neuromorphic computing. Herein, through the thermal oxidation of two-dimensional (2D) WSe2, unique memristive synapses based on the lateral heterostructure of 2D WSe2 and WO3, with multi-gate modulation characteristics, are firstly demonstrated. An intermediate transition layer in the heterostructure is observed through transmission electron microscopy. Raman spectroscopy and det...

Low consumption two-terminal artificial synapse based on transfer-free single-crystal MoS2 memristor.

Both synaptic emulators and brain-like calculation demand an energy-efficient and bio-realistic device where two-dimensional materials have been proven as a promising competitor. Lateral memristors based on transfer-free single-crystal MoS2 with single layer grown by chemical vapor deposition (CVD) were fabricated. Here the MoS2 memristor successfully emulates typical biological synaptic behaviors including excitatory/inhibitory post synaptic current (EPSC/IPSC), spike timing-dependent plasticity (STDP), sp...


RCAN1 Regulates Bidirectional Synaptic Plasticity.

Synaptic plasticity, with its two most studied forms, long-term potentiation (LTP) and long-term depression (LTD), is the cellular mechanism underlying learning and memory. Although it has been known for two decades that bidirectional synaptic plasticity necessitates a corresponding bidirectional regulation of calcineurin activity, the underlying molecular mechanism remains elusive. Using organotypic hippocampal slice cultures, we show here that phosphorylation of the endogenous regulator-of-calcineurin (RC...

The contribution of ion channels in input-output plasticity.

Persistent changes that occur in brain circuits are classically thought to be mediated by long-term modifications in synaptic efficacy. Yet, many studies have shown that voltage-gated ion channels located at the input and output side of the neurons are also the subject to persistent modifications. These channels are thus responsible for intrinsic plasticity that is expressed in many different neuronal types including glutamatergic principal neurons and GABAergic interneurons. As for synaptic plasticity, act...

Linking NMDA Receptor Synaptic Retention to Synaptic Plasticity and Cognition.

NMDA receptor (NMDAR) subunit composition plays a pivotal role in synaptic plasticity at excitatory synapses. Still, the mechanisms responsible for the synaptic retention of NMDARs following induction of plasticity need to be fully elucidated. Rabphilin3A (Rph3A) is involved in the stabilization of NMDARs at synapses through the formation of a complex with GluN2A and PSD-95. Here we used different protocols to induce synaptic plasticity in the presence or absence of agents modulating Rph3A function. The use...

Actin remodeling, the synaptic tag and the maintenance of synaptic plasticity.

Activity-dependent plasticity of synaptic connections is a hallmark of the mammalian brain and represents a key mechanism for rewiring neural circuits during development, experience-dependent plasticity, and brain disorders. Cellular models of memory, such as long-term potentiation and long-term depression, share common principles to memory consolidation. As for memory, the maintenance of synaptic plasticity is dependent on the synthesis of de novo protein synthesis. The synaptic-tagging and capture hypothe...

EphrinB/EphB signaling contributes to the synaptic plasticity of chronic migraine through NR2B phosphorylation.

The specific mechanism of migraine chronification remains unclear. We previously demonstrated that synaptic plasticity was associated with migraine chronification. EphB receptors and their ligands, ephrinBs, are considered to be key molecules regulating the synaptic plasticity of the central nervous system. However, whether they can promote the chronification of migraine by regulating synaptic plasticity is unknown. Therefore, we investigated the role of ephrinB/EphB signaling in chronic migraine (CM). Male...

A potential role for microglia in stress- and drug-induced plasticity in the nucleus accumbens: A mechanism for stress-induced vulnerability to substance use disorder.

Stress is an important risk factor for the development of substance use disorder (SUD). Exposure to both stress and drugs abuse lead to changes in synaptic plasticity and stress-induced alterations in synaptic plasticity may contribute to later vulnerability to SUD. Recent developmental neuroscience studies have identified microglia as regulators of synaptic plasticity. As both stress and drugs of abuse lead to microglial activation, we propose this as a potential mechanism underlying their ability to chang...

Temporal Gating of Synaptic Competition in the Amygdala by Cannabinoid Receptor Activation.

The acquisition of fear memories involves plasticity of the thalamic and cortical pathways to the lateral amygdala (LA). In turn, the maintenance of synaptic plasticity requires the interplay between input-specific synaptic tags and the allocation of plasticity-related proteins. Based on this interplay, weakly activated synapses can express long-lasting forms of synaptic plasticity by cooperating with strongly activated synapses. Increasing the number of activated synapses can shift cooperation to competiti...

Autophagy and synaptic plasticity: epigenetic regulation.

In neurons, autophagy is crucial to proper axon guidance, vesicular release, dendritic spine architecture, spine pruning and synaptic plasticity and, when dysregulated, is associated with brain disorders, including autism spectrum disorders, and neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Once thought to play a housekeeping function of removing misfolded proteins or compromised organelles, neuronal autophagy is now regarded as a finely tuned, real time surveillance and clearance ...

Energy-Efficient Artificial Synapses Based on Oxide Tunnel Junctions.

The development of artificial synapses has enabled the establishment of brain-inspired computing systems, which provides a promising approach for overcoming the inherent limitations of current computer systems. The two-terminal memristors that faithfully mimic the function of biological synapses have intensive prospects in the neural network field. Here, we propose a high-performance artificial synapse based on oxide tunnel junctions with oxygen vacancy migration. Both short-term and long-term plasticities ...

A calcium-influx-dependent plasticity model exhibiting multiple STDP curves.

Hebbian plasticity means that if the firing of two neurons is correlated, then their connection is strengthened. Conversely, uncorrelated firing causes a decrease in synaptic strength. Spike-timing-dependent plasticity (STDP) represents one instantiation of Hebbian plasticity. Under STDP, synaptic changes depend on the relative timing of the pre- and post-synaptic firing. By inducing pre- and post-synaptic firing at different relative times the STDP curves of many neurons have been determined, and it has be...

Synaptic Plasticity: Close Encounters of the Tonic and Phasic Kind.

Neuronal circuits have the capacity to maintain relatively constant activity in the face of perturbations that alter excitability or synaptic properties. A new study demonstrates that different classes of neurons co-innervating the same postsynaptic target express homeostatic plasticity with unique presynaptic features.

Variance analysis as a tool to predict the mechanism underlying synaptic plasticity.

The strength of synaptic transmission onto a neuron depends on the number of functional vesicle release sites (N), the probability of vesicle release (P), and the quantal size (Q). Statistical tools based on the quantal model of synaptic transmission can be used to acquire information on which of these parameters is the source of plasticity. However, quantal analysis depends on assumptions that may not be met at central synapses.

TRPC channels regulate Ca2+-signaling and short-term plasticity of fast glutamatergic synapses.

Transient receptor potential (TRP) proteins form Ca2+-permeable, nonselective cation channels, but their role in neuronal Ca2+ homeostasis is elusive. In the present paper, we show that TRPC channels potently regulate synaptic plasticity by changing the presynaptic Ca2+-homeostasis of hippocampal neurons. Specifically, loss of TRPC1/C4/C5 channels decreases basal-evoked secretion, decreases the pool size of readily releasable vesicles, and accelerates synaptic depression during high-frequency stimulation (H...

Reinforcement Learning in Spiking Neural Networks with Stochastic and Deterministic Synapses.

Though succeeding in solving various learning tasks, most existing reinforcement learning (RL) models have failed to take into account the complexity of synaptic plasticity in the neural system. Models implementing reinforcement learning with spiking neurons involve only a single plasticity mechanism. Here, we propose a neural realistic reinforcement learning model that coordinates the plasticities of two types of synapses: stochastic and deterministic. The plasticity of the stochastic synapse is achieved b...

Changes in the expression of prefoldin subunit 5 depending on synaptic plasticity in the mouse hippocampus.

Prefoldin is a molecular chaperone that assists the folding of newly synthesized polypeptide chains and prevents aggregation of misfolded proteins. Dysfunction of prefoldin is one of the causes of neurodegenerative diseases such as Alzheimer's disease. The aim of this study was to clarify the involvement of prefoldin subunit 5 (PFDN5) in synaptic plasticity. PFDN5 protein expressed in the hippocampus was predominantly localized in the pyramidal cell layer of CA1-CA3 regions. Nicotine application caused a lo...

Turing complete neural computation based on synaptic plasticity.

In neural computation, the essential information is generally encoded into the neurons via their spiking configurations, activation values or (attractor) dynamics. The synapses and their associated plasticity mechanisms are, by contrast, mainly used to process this information and implement the crucial learning features. Here, we propose a novel Turing complete paradigm of neural computation where the essential information is encoded into discrete synaptic states, and the updating of this information achiev...

Rapid Exchange of Synaptic and Extrasynaptic NMDA Receptors in Hippocampal CA1 Neurons.

NMDARs are fundamental coincidence detectors of synaptic activity necessary for the induction of synaptic plasticity and synapse stability. Adjusting NMDAR synaptic content, whether by receptor insertion or lateral diffusion between extrasynaptic and synaptic compartments, could play a substantial role defining the characteristics of the NMDAR-mediated EPSC, which in turn would mediate the ability of the synapse to undergo plasticity. Lateral NMDAR movement has been observed in dissociated neurons, however ...

Postprandial Hyperglycemia Stimulates Neuroglial Plasticity in Hypothalamic POMC Neurons after a Balanced Meal.

Mechanistic studies in rodents evidenced synaptic remodeling in neuronal circuits that control food intake. However, the physiological relevance of this process is not well defined. Here, we show that the firing activity of anorexigenic POMC neurons located in the hypothalamus is increased after a standard meal. Postprandial hyperactivity of POMC neurons relies on synaptic plasticity that engages pre-synaptic mechanisms, which does not involve structural remodeling of synapses but retraction of glial covera...

Simplified calcium signaling cascade for synaptic plasticity.

We propose a model for synaptic plasticity based on a calcium signaling cascade. The model simplifies the full signaling pathways from a calcium influx to the phosphorylation (potentiation) and dephosphorylation (depression) of glutamate receptors that are gated by fictive C1 and C2 catalysts, respectively. This model is based on tangible chemical reactions, including fictive catalysts, for long-term plasticity rather than the conceptual theories commonplace in various models, such as preset thresholds of c...

Grape-derived polyphenols ameliorate stress-induced depression by regulating synaptic plasticity.

Major depressive disorder (MDD) is associated with stress-induced immune dysregulation and reduced Brain Derived Neurotrophic Factor (BDNF) levels in sensitive brain regions associated with depression. Elevated levels of proinflammatory cytokines and reduced BDNF levels lead to impaired synaptic plasticity mechanisms that contribute to the pathophysiology of MDD. There is accumulating evidence that the administration of polyphenols at doses ranging from 5-180 mg/kg body weight can normalize elevated levels ...

Synergistic Improvement of Long-Term Plasticity in Photonic Synapses Using Ferroelectric Polarization in Hafnia-Based Oxide-Semiconductor Transistors.

A number of synapse devices have been intensively studied for the neuromorphic system which is the next-generation energy-efficient computing method. Among these various types of synapse devices, photonic synapse devices recently attracted significant attention. In particular, the photonic synapse devices using persistent photoconductivity (PPC) phenomena in oxide semiconductors are receiving much attention due to the similarity between relaxation characteristics of PPC phenomena and Ca dynamics of biologic...

TRIM32 Deficiency Impairs Synaptic Plasticity by Excitatory-Inhibitory Imbalance via Notch Pathway.

Synaptic plasticity is the neural basis of physiological processes involved in learning and memory. Tripartite motif-containing 32 (TRIM32) has been found to play many important roles in the brain such as neural stem cell proliferation, neurogenesis, inhibition of nerve proliferation, and apoptosis. TRIM32 has been linked to several nervous system diseases including autism spectrum disorder, depression, anxiety, and Alzheimer's disease. However, the role of TRIM32 in regulating the mechanism of synaptic pla...


Quick Search