Advertisement

Topics

High-Density Lipoprotein (HDL) Treatment Study

2014-08-27 03:39:12 | BioPortfolio

Summary

A low level of plasma high-density lipoprotein (HDL) cholesterol, "the good cholesterol", is the most common lipid abnormality observed in patients with a premature atherosclerotic cardiovascular disease. HDL carry excess cholesterol from peripheral tissues to the liver to be metabolized or excreted, a process known as reverse cholesterol transport.

Epidemiological studies have shown an inverse correlation between plasma levels of HDL cholesterol and the risk of cardiovascular disease. An increase in plasma HDL cholesterol levels by 1 mg/dL may reduce the risk of cardiovascular disease by 2 to 3%. The standard care of treatment for a low level of HDL cholesterol is: 1) lifestyle modifications including exercise, smoking cessation, weight control, moderate alcohol intake and decreased dietary fat intake - all patients are encouraged to follow these lifestyle modifications; 2) medications which can raise HDL cholesterol.

Currently used medications to treat lipid disorders can increase, in some extent, HDL cholesterol. These include niacin (vitamin B3), fibric acid derivatives (fibrates) and statins. However there is no data on the effect of these medications on severe cases of HDL deficiency. This project aims to determine whether currently available medications, used in standard medical practice for the treatment of lipoprotein disorders, can substantially increase HDL cholesterol in severe cases of HDL deficiencies.

Description

Objective and rationale. We have collected, in the past 15 years, a large group of patients with familial HDL cholesterol deficiency. In approximately 25% of index probands in our family studies, the genetic basis of HDL deficiency is identified at the molecular level. Approximately 20% of our severe HDL cholesterol deficient patients have mutations within the ABCA1 gene, while mutations at the apoA-I and SMPD1 genes have also been identified. In the present study, we wish to determine whether conventional lipid-regulating medication can substantially increase HDL cholesterol in patients with severe HDL deficiency. Anecdotal reports from our clinic suggest that patients with ABCA1 mutations do not respond to currently available medication; this will be more thoroughly ascertain in this protocol. In addition, examining patients with other genetic HDL deficiencies and familial forms (gene not yet identified) will provide insight on the treatment options for these patients. We feel it is important first whether currently recommended medication can effectively raise HDL cholesterol in these patients.

Study subjects. The subjects will include patients with familial HDL deficiency (HDL cholesterol < 5th percentile for age and gender, with at least one degree relative affected) and HDL deficiency with well-defined genetic mutation. We expect approximately 20-25 patients to enter the study.

Patients will be excluded if at least one of the following criteria is present:

- Triglycerides ≥ 5 mmol/L

- Diabetes

- Severe obesity (BMI ≥ 30)

- Alcohol intake > 21 drinks/week

- Untreated disease (thyroid, hepatic or renal)

Study procedure. Patients will be treated according to current lipid treatment guidelines (McPherson R, Frohlich J, Fodor G, Genest J. Canadian Cardiovascular Society position statement: recommendations for the diagnosis and treatment of dyslipidemias and prevention of cardiovascular disease. Can J Cardiol 2006; 22:913-927) and the use of the three following medications (separately or in combination):

- Lipitor 20 mg

- Lipidil 200 mg

- Niaspan 2 g

It should be noted that all three medications are currently used to treat patients with dyslipidemia and represent the current "standard of care".

Statistics. The null hypothesis expects that no treatment effect increases HDL cholesterol by 10% in the study sample (α = 0.05 and β = 0.8). Using this study design, each patient will serve as his/her own control. Differences between baseline (B) and treatment (T) periods for each medication will be examined by sudent's t-test.

Protocol. Each treatment period will last 8 weeks; wash-out periods will last 4 weeks. Baseline values (B1-3) will be taken at the beginning of each treatment period. On-treatment values (T1-3) will be drawn at the end of each medication period. At each time B (baseline) and T (after a treatment) patient will be examined for:

- Body mass index (weight and height)

- Blood pressure

- Symptoms of ischemic heart disease

- Hepatic functions

- Myopathic symptoms

The following blood test will be performed:

- Total cholesterol

- Triglycerides

- HDL cholesterol

- LDL cholesterol

- ApoA-I, apoB

- ALT, CK

At time B1 blood will also be collected for the determination of:

- TSH

- Creatinine

- ALT

- Blood glucose

In addition, blood will be used to examine the ability of the patient's HDL and plasma to promote cellular cholesterol efflux, using an in vitro model which is well established in our laboratory. Cellular cholesterol efflux tests the efficiency of apoA-I lipidation from cells for the formation of HDL particles. This will provide a general index of the functional status of HDL particles in the body.

Study Design

Allocation: Non-Randomized, Control: Active Control, Endpoint Classification: Efficacy Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment

Conditions

Coronary Arteriosclerosis

Intervention

Atorvastatin; Fenofibrate; Niacin

Location

MUHC-Royal Victoria Hospital
Montreal
Quebec
Canada
H3A 1A1

Status

Completed

Source

McGill University Health Center

Results (where available)

View Results

Links

Published on BioPortfolio: 2014-08-27T03:39:12-0400

Clinical Trials [1739 Associated Clinical Trials listed on BioPortfolio]

SLIM: Combined Effects of Slo-Niacin and Atorvastatin on Lipoproteins and Inflammatory Markers in Hyperlipidemia

Slo-Niacin and atorvastatin (Lipitor) are both drugs that lower cholesterol. In this research, we will compare the effectiveness of Slo-Niacin and atorvastatin taken alone and together. ...

Comparative Atorvastatin Pleiotropic Effects

The primary objective of the study is to evaluate the efficacy of atorvastatin 80 mg daily as compared to atorvastatin 10 mg daily in reducing C-reactive protein levels over a 26-week trea...

Study of Atorvastatin/Fenofibrate (LCP-AtorFen) Combination Therapy in Dyslipidemia

The current study is designed to test the efficacy, safety and tolerability of LCP-AtorFen, a combination of atorvastatin and fenofibrate.

Pharmacological Regulation of Fat Transport in Metabolic Syndrome

The purpose of this study is to determine whether atorvastatin and fenofibrate are effective in the treatment of lipid disorders in obese, insulin resistant subjects.

Comparison of the Combination of Fenofibrate and Simvastatin Versus Atorvastatin

Mixed or combined hyperlipidemia is a common metabolic disorder characterized by both hypercholesterolemia and hypertriglyceridemia. Statins and fibrates have complementary mechanisms and ...

PubMed Articles [1759 Associated PubMed Articles listed on BioPortfolio]

The functional effect of atorvastatin dose-dependent via inflammation factors on acute ST segment elevation myocardial infarction after emergency percutaneous coronary intervention.

To investigate the effect of different doses of atorvastatin on patients with acute ST segment elevation myocardial infarction (MI) after emergency percutaneous coronary intervention (PCI).

Effect of pitavastatin and atorvastatin on regression of atherosclerosis assessed using intravascular ultrasound: a meta-analysis.

The aim of this study is to compare the efficacy and safety of pitavastatin and atorvastatin using data from randomized-controlled trial pooled together by means of a meta-analysis and decide which is...

Effect of Loading Dose of Atorvastatin Prior to Planned Percutaneous Coronary Intervention on Major Adverse Cardiovascular Events in Acute Coronary Syndrome: The SECURE-PCI Randomized Clinical Trial.

The effects of loading doses of statins on clinical outcomes in patients with acute coronary syndrome (ACS) and planned invasive management remain uncertain.

Evaluation of pharmacokinetic interactions between bicyclol and co-administered drugs in rat and human liver microsomes in vitro and in rats in vivo.

1. Bicyclol is a new synthetic anti-hepatitic drug and primarily metabolized by CYP3A. The aim of this study was to evaluate the pharmacokinetic interactions between bicyclol and co-administered drugs...

Niacin deficiency modulates genes involved in cancer: Are smokers at higher risk?

The role of niacin's metabolite, nicotinamide adenine dinucleotide (NAD), in DNA repair via base-excision repair pathway is well documented. We evaluated if niacin deficiency results in genetic instab...

Medical and Biotech [MESH] Definitions

Abnormal balloon- or sac-like dilatation in the wall of CORONARY VESSELS. Most coronary aneurysms are due to CORONARY ATHEROSCLEROSIS, and the rest are due to inflammatory diseases, such as KAWASAKI DISEASE.

Malformations of CORONARY VESSELS, either arteries or veins. Included are anomalous origins of coronary arteries; ARTERIOVENOUS FISTULA; CORONARY ANEURYSM; MYOCARDIAL BRIDGING; and others.

Complete blockage of blood flow through one of the CORONARY ARTERIES, usually from CORONARY ATHEROSCLEROSIS.

Ticlopidine is an effective inhibitor of platelet aggregation. The drug has been found to significantly reduce infarction size in acute myocardial infarcts and is an effective antithrombotic agent in arteriovenous fistulas, aorto-coronary bypass grafts, ischemic heart disease, venous thrombosis, and arteriosclerosis.

An antilipemic agent which reduces both CHOLESTEROL and TRIGLYCERIDES in the blood.

More From BioPortfolio on "High-Density Lipoprotein (HDL) Treatment Study"

Advertisement
Quick Search
Advertisement
Advertisement

 

Relevant Topics

Blood
Blood is a specialized bodily fluid that delivers necessary substances to the body's cells (in animals) – such as nutrients and oxygen – and transports waste products away from those same cells.  In vertebrates, it is composed of blo...

Cholesterol
Cholesterol is a waxy steroid metabolite found in the cell membranes and transported in the blood plasma. It is an important structural component of mammalian cell membranes, where it is establishes proper membrane permeability and fluidity. Cholesterol ...

Statins
Statins (or HMG-CoA reductase inhibitors) are a class of drug used to lower cholesterol levels by inhibiting the enzyme HMG-CoA reductase, which plays a central role in the production of cholesterol in the liver. Increased cholesterol levels have been as...


Searches Linking to this Trial